A046714 Convolution of A000108 (Catalan) with A000351 (powers of 5).
1, 6, 32, 165, 839, 4237, 21317, 107014, 536500, 2687362, 13453606, 67326816, 336842092, 1684953360, 8427441240, 42146901045, 210769862895, 1053978959265, 5270372435025, 26353629438315, 131774711311995
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[n le 1 select 1 else 5*Self(n-1) + Catalan(n-1): n in [1..40]]; // G. C. Greubel, Jul 28 2024
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-5*x)), {x,0,40}], x] (* G. C. Greubel, Jul 28 2024 *)
-
SageMath
@CachedFunction def A046714(n): return 1 if n==1 else 5*A046714(n-1) + catalan_number(n-1) [A046714(n) for n in range(1,41)] # G. C. Greubel, Jul 28 2024
Formula
a(n) = Sum_{k=0..n} A000108(k)*5^(n-k).
a(n) = 5*a(n-1) + C(n), a(0) = 1.
G.f.: c(x)/(1-5*x), where c(x) = g.f. for Catalan numbers A000108.
Homogeneous recursion: a(n) = (3*(3*n+1)/(n+1))*a(n-1) - (10*(2*n-1)/(n+1))*a(n-2), a(-1) := 0, a(0)=1, n >= 1.
Hypergeometric 2F1 form: 2*a(n) = 5^(n+1) - binomial(2*(n+1), n+1) * hypergeom([ -n-1, 1 ], [ 1/2 ], -1/4).
a(n) ~ (5-sqrt(5))/2 * 5^n. - Vaclav Kotesovec, Jul 07 2016
Comments