A055272 First differences of 7^n (A000420).
1, 6, 42, 294, 2058, 14406, 100842, 705894, 4941258, 34588806, 242121642, 1694851494, 11863960458, 83047723206, 581334062442, 4069338437094, 28485369059658, 199397583417606, 1395783083923242, 9770481587462694
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Jean-Marie De Koninck and Armel Mercier, Introduction à la théorie des nombres, Collection Universitaire de Mathématiques, Modulo, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (7).
Programs
-
Maple
1, seq(6*7^(n-1), n=1..20); # G. C. Greubel, Mar 16 2020
-
Mathematica
Table[EulerPhi[7^n], {n, 0, 19}] (* Alonso del Arte, May 08 2006 *)
-
PARI
a(n)=round(7^n*6/7) \\ Charles R Greathouse IV, Feb 07 2012
-
Sage
[1]+[6*7^(n-1) for n in (1..20)] # G. C. Greubel, Mar 16 2020
Formula
G.f.: (1-x)/(1-7*x).
G.f.: 1/( 1 - 6*Sum(k>=1, x^k) ).
a(n) = 6*7^(n-1), a(0)=1.
E.g.f.: (1 + 6*exp(7*x))/7. - G. C. Greubel, Mar 16 2020
Comments