A000400
Powers of 6: a(n) = 6^n.
Original entry on oeis.org
1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 10077696, 60466176, 362797056, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444736, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856, 131621703842267136
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 86.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 271
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Pentaflake
- Index entries for linear recurrences with constant coefficients, signature (6).
A026898
a(n) = Sum_{k=0..n} (n-k+1)^k.
Original entry on oeis.org
1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01: [ . . . . . ]
02: [ . 1 . . . ]
03: [ . 1 . . 1 ]
04: [ . 1 . 1 . ]
05: [ . 1 . 1 1 ]
06: [ . 1 1 . . ]
07: [ . 1 1 . 1 ]
08: [ . 1 1 1 . ]
09: [ . 1 1 1 1 ]
10: [ . 1 2 . . ]
11: [ . 1 2 . 1 ]
12: [ . 1 2 . 2 ]
13: [ . 1 2 1 . ]
14: [ . 1 2 1 1 ]
15: [ . 1 2 1 2 ]
16: [ . 1 2 2 . ]
17: [ . 1 2 2 1 ]
18: [ . 1 2 2 2 ]
19: [ . 1 2 3 . ]
20: [ . 1 2 3 1 ]
21: [ . 1 2 3 2 ]
22: [ . 1 2 3 3 ]
23: [ . 1 2 3 4 ]
(End)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Giulio Cerbai, Pattern-avoiding modified ascent sequences, arXiv:2401.10027 [math.CO], 2024. See p. 12.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See p. 25.
- Sajed Haque, Discriminators of Integer Sequences, 2017, See p. 33 Corollary 29.
- Mathematics Stack Exchange, Asymptotics of ..., 2011.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019. See p. 3.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See p. 4.
-
a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
-- Reinhard Zumkeller, Sep 14 2014
-
[(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
-
a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
-
Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
-
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
for(n=0,30,print1(a(n),", "))
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)} /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
for(n=0, 25, print1(a(n), ", "))
-
[sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
A277504
Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0
Array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 ...
0 1 3 6 10 15 21 28 36 45 ...
0 1 6 18 40 75 126 196 288 405 ...
0 1 10 45 136 325 666 1225 2080 3321 ...
0 1 20 135 544 1625 3996 8575 16640 29889 ...
0 1 36 378 2080 7875 23436 58996 131328 266085 ...
0 1 72 1134 8320 39375 140616 412972 1050624 2394765 ...
0 1 136 3321 32896 195625 840456 2883601 8390656 21526641 ...
0 1 272 9963 131584 978125 5042736 20185207 67125248 193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
Rows 0-20 are
A000012,
A001477,
A000217 (triangular numbers),
A002411 (pentagonal pyramidal numbers),
A037270,
A168178,
A071232,
A168194,
A071231,
A168372,
A071236,
A168627,
A071235,
A168663,
A168664,
A170779,
A170780,
A170790,
A170791,
A170801,
A170802.
-
[[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
-
Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
-
T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
Array transposed for greater consistency by
Andrew Howroyd, Apr 04 2017
A004248
Array read by ascending antidiagonals: A(n, k) = k^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 27, 16, 5, 1, 0, 1, 32, 81, 64, 25, 6, 1, 0, 1, 64, 243, 256, 125, 36, 7, 1, 0, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 0, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 0, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0
Seen as an array that is read by ascending antidiagonals:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 1, 4, 9, 16, 25, 36, 49, 64, ...
[3] 0, 1, 8, 27, 64, 125, 216, 343, 512, ...
[4] 0, 1, 16, 81, 256, 625, 1296, 2401, 4096, ...
[5] 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, ...
[6] 0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, ...
[7] 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, ...
-
T[x_, y_] := If[y == 0, 1, (x - y)^y];
Table[T[x, y], {x, 0, 11}, {y, x, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2017 *)
-
T(x, y) = x^y \\ Charles R Greathouse IV, Feb 07 2017
-
def Arow(n, len): return [k**n for k in range(len)]
for n in range(8): print([n], Arow(n, 9)) # Peter Luschny, Apr 16 2024
A051129
Table T(n,k) = k^n read by upwards antidiagonals (n >= 1, k >= 1).
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 8, 9, 4, 1, 16, 27, 16, 5, 1, 32, 81, 64, 25, 6, 1, 64, 243, 256, 125, 36, 7, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1, 1024, 19683, 65536, 78125, 46656, 16807, 4096, 729, 100, 11
Offset: 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49
1 8 27 64 125 216 343
1 16 81 256 625 1296 2401
1 32 243 1024 3125 7776 16807
1 64 729 4096 15625 46656 117649
1 128 2187 16384 78125 279936 823543
-
a051129 n k = k ^ (n - k)
a051129_row n = a051129_tabl !! (n-1)
a051129_tabl = zipWith (zipWith (^)) a002260_tabl $ map reverse a002260_tabl
-- Reinhard Zumkeller, Sep 14 2014
-
T:= (n, k)-> k^n:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Table[ k^(n-k+1), {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2012 *)
-
b(n) = floor(1/2 + sqrt(2 * n));
vector(100, n, (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1)) \\ Altug Alkan, Dec 09 2015
A051128
Table T(n,k) = n^k read by upwards antidiagonals (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 11, 100, 729, 4096, 16807, 46656, 78125, 65536, 19683, 1024, 1
Offset: 1
Table begins
1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, ...
3, 9, 27, 81, 243, ...
4, 16, 64, 256, 1024, ...
-
A051128 := proc(n) # Boris Putievskiy's formula
a := floor((sqrt(8*n-7)+1)/2);
b := (a+a^2)/2-n;
c := (a-a^2)/2+n;
(b+1)^c end:
seq(A051128(n), n=1..61); # Peter Luschny, Dec 14 2012
# second Maple program:
T:= (n, k)-> n^k:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Table[n^(k - n + 1), {k, 1, 11}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Dec 14 2012 *)
-
T(n,k) = n^k \\ Charles R Greathouse IV, Feb 09 2017
A003320
a(n) = max_{k=0..n} k^(n-k).
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 27, 81, 256, 1024, 4096, 16384, 78125, 390625, 1953125, 10077696, 60466176, 362797056, 2176782336, 13841287201, 96889010407, 678223072849, 4747561509943, 35184372088832, 281474976710656, 2251799813685248
Offset: 0
a(5) = max(5^0, 4^1, 3^2, 2^3, 1^4, 0^5) = max(1,4,9,8,1,0) = 9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 231.
- Seiichi Manyama, Table of n, a(n) for n = 0..599 (terms 0..100 from T. D. Noe).
- D. Easdown, Minimal faithful permutation and transformation representations of groups and semigroups, Contemporary Math. (1992), Vol. 131 (Part 3), 75-84.
- R. Gray and J. D. Mitchell, Largest subsemigroups of the full transformation monoid, Discrete Math., 308 (2008), 4801-4810.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- I. Tomescu, Excerpts from "Introducese in Combinatorica" (1972), pp. 230-1, 44-5, 128-9. (Annotated scanned copy)
-
a003320 n = maximum $ zipWith (^) [0 .. n] [n, n-1 ..]
-- Reinhard Zumkeller, Jun 24 2013
-
Join[{1},Max[#]&/@Table[k^(n-k),{n,25},{k,n}]] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n) = vecmax(vector(n+1, k, (k-1)^(n-k+1))); \\ Michel Marcus, Jun 13 2017
Easdown reference from Michail Kats (KatsMM(AT)info.sgu.ru)
A293500
Number of orientable strings of length n using a maximum of k colors, array read by descending antidiagonals, T(n,k) for n >= 1 and k >= 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 9, 6, 0, 0, 10, 24, 36, 12, 0, 0, 15, 50, 120, 108, 28, 0, 0, 21, 90, 300, 480, 351, 56, 0, 0, 28, 147, 630, 1500, 2016, 1053, 120, 0, 0, 36, 224, 1176, 3780, 7750, 8064, 3240, 240, 0, 0, 45, 324, 2016, 8232, 23220, 38750, 32640, 9720, 496, 0
Offset: 1
Array begins:
======================================================
n\k| 1 2 3 4 5 6 7 8
---|--------------------------------------------------
1 | 0 0 0 0 0 0 0 0...
2 | 0 1 3 6 10 15 21 28...
3 | 0 2 9 24 50 90 147 224...
4 | 0 6 36 120 300 630 1176 2016...
5 | 0 12 108 480 1500 3780 8232 16128...
6 | 0 28 351 2016 7750 23220 58653 130816...
7 | 0 56 1053 8064 38750 139320 410571 1046528...
8 | 0 120 3240 32640 195000 839160 2881200 8386560...
...
For T(4,2)=6, the chiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB.
-
Table[Function[n, (k^n - k^(Ceiling[n/2]))/2][m - k + 1], {m, 11}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Oct 11 2017 *)
-
T(n,k) = (k^n - k^(ceil(n/2)))/2;
A265583
Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1
1 2 3 4 5 6 7
0 2 6 12 20 30 42
0 2 12 36 80 150 252
0 2 24 108 320 750 1512
0 2 48 324 1280 3750 9072
0 2 96 972 5120 18750 54432
0 2 192 2916 20480 93750 326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
-
T:= function(n,k)
if (n=1 and k=1) then return 1;
else return k*(k-1)^(n-k-1);
fi;
end;
Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
-
T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
[T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
-
A265583 := proc(n,k)
k*(k-1)^(n-1) ;
end proc:
seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
-
T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
-
T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
-
def T(n, k):
if (n==k==1): return 1
else: return k*(k-1)^(n-k-1)
[[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
A287698
Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
Offset: 0
Array starts:
k\n| 0 1 2 3 4 5 6 7
---|-------------------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
k=2| 1, 2, 10, 56, 346, 2252, 15184, 104960, ... A000172
k=3| 1, 3, 27, 381, 6219, 111753, 2151549, 43497891, ... A141057
k=4| 1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, ... A287699
k=5| 1, 5, 85, 2705, 124405, 7120505, 464011825, 33031599725, ...
k=6| 1, 6, 126, 5136, 316206, 25461756, 2443835736, 263581282656, ...
A001107,A287702,A287700, A287701, A055733
-
A287698_row := (k, len) -> seq(A287696_poly(j)(k), j=0..len):
A287698_row := proc(k, len) hypergeom([], [1, 1], x):
series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end:
for k from 0 to 6 do A287698_row(k, 9) od;
A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z);
series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end:
for n from 0 to 7 do A287698_col(n, 9) od;
-
Table[Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)
Showing 1-10 of 23 results.
Comments