cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A104872 Diagonal sums of A004248.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 12, 27, 64, 163, 441, 1268, 3855, 12344, 41464, 145653, 533736, 2036149, 8071785, 33192790, 141351715, 622384730, 2829417276, 13263528351, 64038928728, 318121600695, 1624347614737, 8517247764136, 45822087138879
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, k^(n-2*k)); \\ Seiichi Manyama, Apr 09 2022
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x))) \\ Seiichi Manyama, Apr 09 2022

Formula

a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k).
G.f.: Sum_{k>=0} x^(2*k) / (1 - k * x). - Seiichi Manyama, Apr 09 2022
a(n) ~ sqrt(Pi) * (n/(2*LambertW(exp(1)*n/2)))^(n + 1/2 - n/LambertW(exp(1)*n/2)) / sqrt(1 + LambertW(exp(1)*n/2)). - Vaclav Kotesovec, Apr 14 2022

A026898 a(n) = Sum_{k=0..n} (n-k+1)^k.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0

Views

Author

Keywords

Comments

Row sums of A004248, A009998, A009999.
First differences are in A047970.
First differences of A103439.
Antidiagonal sums of array A003992.
a(n-1), for n>=1, is the number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=1+max(prefix) for k>=1, that are simultaneously projections as maps f: [n] -> [n] where f(x)<=x and f(f(x))=f(x); see example and the two comments (Arndt, Apr 30 2011 Jan 04 2013) in A000110. - Joerg Arndt, Mar 07 2015
Number of finite sequences s of length n+1 whose discriminator sequence is s itself. Here the discriminator sequence of s is the one where the n-th term (n>=1) is the least positive integer k such that the first n terms are pairwise incongruent, modulo k. - Jeffrey Shallit, May 17 2016
From Gus Wiseman, Jan 08 2019: (Start)
Also the number of set partitions of {1,...,n+1} whose minima form an initial interval of positive integers. For example, the a(3) = 9 set partitions are:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,4},{3}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1,3,4},{2}}
{{1,2,3,4}}
Missing from this list are:
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,2},{3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
(End)
a(n) is the number of m-tuples of nonnegative integers less than or equal to n-m (including the "0-tuple"). - Mathew Englander, Apr 11 2021

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01:  [ . . . . . ]
02:  [ . 1 . . . ]
03:  [ . 1 . . 1 ]
04:  [ . 1 . 1 . ]
05:  [ . 1 . 1 1 ]
06:  [ . 1 1 . . ]
07:  [ . 1 1 . 1 ]
08:  [ . 1 1 1 . ]
09:  [ . 1 1 1 1 ]
10:  [ . 1 2 . . ]
11:  [ . 1 2 . 1 ]
12:  [ . 1 2 . 2 ]
13:  [ . 1 2 1 . ]
14:  [ . 1 2 1 1 ]
15:  [ . 1 2 1 2 ]
16:  [ . 1 2 2 . ]
17:  [ . 1 2 2 1 ]
18:  [ . 1 2 2 2 ]
19:  [ . 1 2 3 . ]
20:  [ . 1 2 3 1 ]
21:  [ . 1 2 3 2 ]
22:  [ . 1 2 3 3 ]
23:  [ . 1 2 3 4 ]
(End)
		

Crossrefs

Programs

  • Haskell
    a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
    
  • Maple
    a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
    
  • PARI
    {INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
    {a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)}  /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
    for(n=0, 25, print1(a(n), ", "))
    
  • Sage
    [sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021

Formula

a(n) = A003101(n) + 1.
G.f.: Sum_{n>=0} x^n/(1 - (n+1)*x). - Paul D. Hanna, Sep 13 2011
G.f.: G(0) where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
E.g.f.: Sum_{n>=0} Integral^n exp((n+1)*x) dx^n, where Integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration. - Paul D. Hanna, Dec 28 2013
O.g.f.: Sum_{n>=0} n! * x^n/(1-x)^(n+1) / Product_{k=1..n} (1 + k*x). - Paul D. Hanna, Jul 20 2014
a(n) = A101494(n+1,0). - Vladimir Kruchinin, Apr 01 2015
a(n-1) = Sum_{k = 1..n} k^(n-k). - Gus Wiseman, Jan 08 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + (n+1)/w(n))) * ((n+1)/w(n))^(n+2 - (n+1)/w(n)), where w(n) = LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.

Extensions

a(23)-a(25) from Paul D. Hanna, Dec 28 2013

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A048723 Binary "exponentiation" without carries: {0..y}^{0..x}, where y (column index) is binary encoding of GF(2)-polynomial and x (row index) is the exponent.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 5, 4, 1, 0, 1, 16, 15, 16, 5, 1, 0, 1, 32, 17, 64, 17, 6, 1, 0, 1, 64, 51, 256, 85, 20, 7, 1, 0, 1, 128, 85, 1024, 257, 120, 21, 8, 1, 0, 1, 256, 255, 4096, 1285, 272, 107, 64, 9, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Examples

			1 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 ...
1 2 4 8 16 32 64 128 256 ...
1 3 5 15 17 51 85 255 257 ...
1 4 16 64 256 1024 4096 16384 65536 ...
		

Crossrefs

Cf. ordinary power table A004248 and A034369, A034373.
Cf. A048710. Row 3: A001317, Row 5: A038183 (bisection of row 3), Row 7: A038184. Column 2: A000695, diagonal of A048720.
Main diagonal: A048731.

Programs

  • Maple
    # Xmult and trinv have been given in A048720.
    Xpower := proc(nn,mm) option remember; if(0 = mm) then RETURN(1); # By definition, also 0^0 = 1. else RETURN(Xmult(nn,Xpower(nn,mm-1))); fi; end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
    Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s];
    Xpower[nn_, mm_] := Xpower[nn, mm] = If[0 == mm, 1, Xmult[nn, Xpower[nn, mm - 1]]];
    a[n_] := Xpower[n - (trinv[n]*(trinv[n] - 1))/2, (trinv[n] - 1)*((1/2)* trinv[n] + 1) - n];
    Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Mar 04 2016, adapted from Maple *)

Formula

a(n) = Xpower( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) );

A051129 Table T(n,k) = k^n read by upwards antidiagonals (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 8, 9, 4, 1, 16, 27, 16, 5, 1, 32, 81, 64, 25, 6, 1, 64, 243, 256, 125, 36, 7, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1, 1024, 19683, 65536, 78125, 46656, 16807, 4096, 729, 100, 11
Offset: 1

Views

Author

Keywords

Comments

(n-th term) = (n-th term of A002260)^(n-th term of A004736). Both A002260 and A004736 are related to A002024. - Robert A. Stump (bee_ess107(AT)yahoo.com), Aug 29 2002

Examples

			  1   2       3       4       5       6       7
  1   4       9      16      25      36      49
  1   8      27      64     125     216     343
  1  16      81     256     625    1296    2401
  1  32     243    1024    3125    7776   16807
  1  64     729    4096   15625   46656  117649
  1 128    2187   16384   78125  279936  823543
		

Crossrefs

Cf. A051128 (transposed), A003992 (transposed), A004248.
Cf. A002260, A003101 (antidiagonal sums), A000169 (central terms), A003320 (row maxima), A247358 (sorted rows).

Programs

  • Haskell
    a051129 n k = k ^ (n - k)
    a051129_row n = a051129_tabl !! (n-1)
    a051129_tabl = zipWith (zipWith (^)) a002260_tabl $ map reverse a002260_tabl
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Maple
    T:= (n, k)-> k^n:
    seq(seq(T(1+d-k, k), k=1..d), d=1..11);  # Alois P. Heinz, Apr 18 2020
  • Mathematica
    Table[ k^(n-k+1), {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2012 *)
  • PARI
    b(n) = floor(1/2 + sqrt(2 * n));
    vector(100, n, (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1)) \\ Altug Alkan, Dec 09 2015

Formula

a(n) = (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1), where b(n) = [ 1/2 + sqrt(2 * n) ]. (b(n) is the n-th term of A002024.) - Robert A. Stump (bee_ess107(AT)yahoo.com), Aug 29 2002

Extensions

More terms from James Sellers, Dec 11 1999

A371761 Array read by antidiagonals: The number of parades with n girls and k boys that begin with a girl and end with a boy.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 13, 13, 1, 0, 0, 1, 29, 73, 29, 1, 0, 0, 1, 61, 301, 301, 61, 1, 0, 0, 1, 125, 1081, 2069, 1081, 125, 1, 0, 0, 1, 253, 3613, 11581, 11581, 3613, 253, 1, 0, 0, 1, 509, 11593, 57749, 95401, 57749, 11593, 509, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 05 2024

Keywords

Comments

The name derives from a proposition by Donald Knuth, who describes the setup of a "girls and boys parade" as follows: "There are m girls {g_1, ..., g_m} and n boys {b_1, ..., b_n}, where g_i is younger than g_{i+1} and b_j is younger than b_{j+1}, but we know nothing about the relative ages of g_i and b_j. In how many ways can they all line up in a sequence such that no girl is directly preceded by an older girl and no boy is directly preceded by an older boy?" [Our notation: A <- D, n <- m, k <- n].
In A344920, the Worpitzky transform is defined as a sequence-to-sequence transformation WT := A -> B, where B(n) = Sum_{k=0..n} A163626(n, k)*A(k). (If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers (with B(1) = 1/2.)) The rows of the array are the Worpitzky transforms of the powers up to the sign (-1)^k.
The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the rows of A004248. This makes the array closely linked to A344499, which is generated in the same way, but applied to the columns of A004248.
Conjecture: Row n + 1 is row 2^n in table A136301, where a probabilistic interpretation is given (see the link to Parsonnet's paper below).

Examples

			Array starts:
[0] 1, 0,   0,     0,      0,       0,        0,         0,          0, ...
[1] 0, 1,   1,     1,      1,       1,        1,         1,          1, ...
[2] 0, 1,   5,    13,     29,      61,      125,       253,        509, ...
[3] 0, 1,  13,    73,    301,    1081,     3613,     11593,      36301, ...
[4] 0, 1,  29,   301,   2069,   11581,    57749,    268381,    1191989, ...
[5] 0, 1,  61,  1081,  11581,   95401,   673261,   4306681,   25794781, ...
[6] 0, 1, 125,  3613,  57749,  673261,  6487445,  55213453,  431525429, ...
[7] 0, 1, 253, 11593, 268381, 4306681, 55213453, 610093513, 6077248381, ...
.
Seen as triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 1,  1,   0;
  [4] 0, 1,  5,   1,   0;
  [5] 0, 1, 13,  13,   1,  0;
  [6] 0, 1, 29,  73,  29,  1, 0;
  [7] 0, 1, 61, 301, 301, 61, 1, 0;
.
A(n, k) as sum of powers:
  A(2, k) =  -3+   2*2^k;
  A(3, k) =   7-  12*2^k+    6*3^k;
  A(4, k) = -15+  50*2^k-   60*3^k+   24*4^k;
  A(5, k) =  31- 180*2^k+  390*3^k-  360*4^k+  120*5^k;
  A(6, k) = -63+ 602*2^k- 2100*3^k+ 3360*4^k- 2520*5^k+  720*6^k;
  A(7, k) = 127-1932*2^k+10206*3^k-25200*4^k+31920*5^k-20160*6^k+5040*7^k;
		

Crossrefs

Variant: A272644.
Rows include: A344920 (row 2, signed), A006230 (row 3).
Row sums of triangle (n>=2): A297195, alternating row sums: A226158.
Diagonal of array: A048144.

Programs

  • Maple
    egf := 1/(exp(w) + exp(z) - exp(w + z)): serw := n -> series(egf, w, n + 1):
    # Returns row n (>= 0) with length len (> 0):
    R := n -> len -> local k;
    seq(k!*coeff(series(n!*coeff(serw(n), w, n), z, len), z, k), k = 0..len - 1):
    seq(lprint(R(n)(9)), n = 0..7);
    # Explicit with Stirling2 :
    A := (n, k) -> local j; add(j!^2*Stirling2(n, j)*Stirling2(k, j), j = 0..min(n, k)): seq(lprint(seq(A(n, k), k = 0..8)), n = 0..7);
    # Using the unsigned Worpitzky transform.
    WT := (a, len) -> local n, k;
    seq(add((-1)^(n - k)*k!*Stirling2(n + 1, k + 1)*a(k), k=0..n), n = 0..len-1):
    Arow := n -> WT(x -> x^n, 8): seq(lprint(Arow(n)), n = 0..8);
    # Two recurrences:
    A := proc(n, k) option remember; local j; if k = 0 then return k^n fi;
    add(binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)), j = 1..n) end:
    A := proc(n, k) option remember; local j; if n = 0 then 0^k else
    add(binomial(k + `if`(j=0,0,1), j+1)*A(n-1, k-j), j = 0..k) fi end:
  • Mathematica
    (* Using the unsigned Worpitzky transform. *)
    Unprotect[Power]; Power[0, 0] = 1;
    W[n_, k_] := (-1)^(n - k) k! StirlingS2[n + 1, k + 1];
    WT[a_, len_] := Table[Sum[W[n, k] a[k], {k, 0, n}], {n, 0, len-1}];
    A371761row[n_, len_] := WT[#^n &, len];
    Table[A371761row[n, 9], {n, 0, 8}] // MatrixForm
    (* Row n >= 1 by linear recurrence: *)
    RowByLRec[n_, len_] := LinearRecurrence[Table[-StirlingS1[n+1, n+1-k], {k, 1, n}],
    A371761row[n, n+1], len]; Table[RowByLRec[n, 9], {n, 1, 8}] // MatrixForm
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def A(n, k):
        if n == 0: return int(k == 0)
        return sum(binomial(k + int(j > 0), j + 1) * A(n - 1, k - j)
               for j in range(k + 1))
    for n in range(8): print([A(n, k) for k in range(8)])
    
  • Python
    # The Akiyama-Tanigawa algorithm for powers generates the rows.
    def ATPowList(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = k**n   # Changing this to R[k] = (n + 1)**k generates A344499.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATPowList(n, 9))
  • SageMath
    def A371761(n, k): return sum((-1)^(j - k) * factorial(j) * stirling_number2(k + 1, j + 1) * j^n for j in range(k + 1))
    for n in range(9): print([A371761(n, k) for k in range(8)])
    

Formula

A(n, k) = k! * [z^k] (n! * [w^n] 1/(exp(w) + exp(z) - exp(w + z))).
A(n, k) = k! * [w^k] (Sum_{j=0..n} A075263(n, n - j) * exp(j*w)).
A(n, k) = Sum_{j=0..k} (-1)^(j-k) * Stirling2(k + 1, j + 1) * j! * j^n.
A(n, k) = Sum_{j=0..min(n,k)} (j!)^2 * Stirling2(n, j) * Stirling2(k, j).
A(n, k) = Sum_{j=0..n} (-1)^(n-j)*A028246(n, j) * j^k; this is explicit:
A(n, k) = Sum_{j=0..n} Sum_{m=0..n} binomial(n-m, n-j) * Eulerian1(n, m) * j^k *(-1)^(n-j), where Eulerian1 = A173018.
A(n, k) = Sum_{j=0..k} binomial(k + [j>0], j+1)*A(n-1, k-j) for n > 0.
A(n, k) = Sum_{j=1..n} binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)) for n,k >= 1.
Row n (>=1) satisfies a linear recurrence:
A(n, k) = -Sum_{j=1..n} Stirling1(n + 1, n + 1 - j)*A(n, k - j) if k > n.
A(n, k) = [x^k] (Sum_{j=0..n} A371762(n, j)*x^j) / (Sum_{j=0..n} Stirling1(n + 1, n + 1 - j)*x^j).
A(n, k) = A(k, n). (From the symmetry of the bivariate exponential g.f.)
Let T(n, k) = A(n - k, k) and G(n) = Sum_{k=0..n} (-1)^k*T(n, k) the alternating row sums of the triangle. Then G(n) = (n + 2)*Euler(n + 1, 1) and as shifted Genocchi numbers G(n) = -2*(n + 2)*PolyLog(-n - 1, -1) = -A226158(n + 2).

A144074 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 20, 5, 0, 1, 5, 26, 64, 59, 7, 0, 1, 6, 40, 148, 276, 162, 11, 0, 1, 7, 57, 285, 843, 1137, 449, 15, 0, 1, 8, 77, 488, 2020, 4632, 4648, 1200, 22, 0, 1, 9, 100, 770, 4140, 13876, 25124, 18585, 3194, 30, 0, 1, 10, 126
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

Column k > 1 is asymptotic to k^n * exp(2*sqrt(n) - 1/2 + c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} 1/(m*(k^(m-1)-1)). - Vaclav Kotesovec, Mar 14 2015

Examples

			A(4,1) = 5: {aaaa}, {aaa,a}, {aa,aa}, {aa,a,a}, {a,a,a,a}.
A(2,2) = 7: {aa}, {a,a}, {bb}, {b,b}, {ab}, {ba}, {a,b}.
A(2,3) = 15: {aa}, {a,a}, {bb}, {b,b}, {cc}, {c,c}, {ab}, {ba}, {a,b}, {ac}, {ca}, {a,c}, {bc}, {cb}, {b,c}.
A(3,2) = 20: {aaa}, {a,aa}, {a,a,a}, {bbb}, {b,bb}, {b,b,b}, {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}, {a,a,b}, {bba}, {bab}, {abb}, {b,ba}, {b,ab}, {bb,a}, {b,b,a}.
Square array begins:
  1, 1,   1,    1,    1,     1, ...
  0, 1,   2,    3,    4,     5, ...
  0, 2,   7,   15,   26,    40, ...
  0, 3,  20,   64,  148,   285, ...
  0, 5,  59,  276,  843,  2020, ...
  0, 7, 162, 1137, 4632, 13876, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A252654.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k^j)(n); seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[ Product[1/(1-x^j)^(k^j), {j, 1, n}], {x, 0, n}]; a[0, ] = 1; a[?Positive, 0] = 0;
    Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    A[n_, k_] := etr[k^#&][n];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(k^j).
Column k is Euler transform of the powers of k.
T(n,k) = Sum_{i=0..k} C(k,i) * A257740(n,k-i). - Alois P. Heinz, May 08 2015

Extensions

Name changed by Alois P. Heinz, Sep 21 2018

A104878 A sum-of-powers number triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Comments

Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020

Examples

			Triangle starts:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 15, 13,  5,  1;
  1,  6, 31, 40, 21,  6,  1;
  ...
		

Crossrefs

Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.

Programs

  • Maple
    A104878 :=proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n,k), k=0..n) od; seq(seq(A104878(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011

Formula

T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020

A051128 Table T(n,k) = n^k read by upwards antidiagonals (n >= 1, k >= 1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 11, 100, 729, 4096, 16807, 46656, 78125, 65536, 19683, 1024, 1
Offset: 1

Views

Author

Keywords

Comments

Sum of antidiagonals is A003101(n) for n>0. - Alford Arnold, Jan 14 2007

Examples

			Table begins
1,    1,    1,    1,    1, ...
2,    4,    8,   16,   32, ...
3,    9,   27,   81,  243, ...
4,   16,   64,  256, 1024, ...
		

Crossrefs

Programs

Formula

a(n) = A004736(n)^A002260(n) or ((t*t+3*t+4)/2-n)^(n-(t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012

Extensions

More terms from James Sellers, Dec 11 1999

A145905 Square array read by antidiagonals: Hilbert transform of triangle A060187.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0

Views

Author

Peter Bala, Oct 27 2008

Keywords

Comments

Definition of the Hilbert transform of a triangular array:
For many square arrays in the database the entries in a row are polynomial in the column index, of degree d say and hence the row generating function has the form P(x)/(1-x)^(d+1), where P is some polynomial function. Often the array whose rows are formed from the coefficients of these P polynomials is of independent interest. This suggests the following definition.
Let [L(n,k)]n,k>=0 be a lower triangular array and let R(n,x) := sum {k = 0 .. n} L(n,k)*x^k, denote the n-th row generating polynomial of L. Then we define the Hilbert transform of L, denoted Hilb(L), to be the square array whose n-th row, n >= 0, has the generating function R(n,x)/(1-x)^(n+1).
In this particular case, L is the array A060187, the array of Eulerian numbers of type B, whose row polynomials are the h-polynomials for permutohedra of type B. The Hilbert transform is an infinite Vandermonde matrix V(1,3,5,...).
We illustrate the Hilbert transform with a few examples:
(1) The Delannoy number array A008288 is the Hilbert transform of Pascal's triangle A007318 (view as the array of coefficients of h-polynomials of n-dimensional cross polytopes).
(2) The transpose of the array of nexus numbers A047969 is the Hilbert transform of the triangle of Eulerian numbers A008292 (best viewed in this context as the coefficients of h-polynomials of n-dimensional permutohedra of type A).
(3) The sequence of Eulerian polynomials begins [1, x, x + x^2, x + 4*x^2 + x^3, ...]. The coefficients of these polynomials are recorded in triangle A123125, whose Hilbert transform is A004248 read as square array.
(4) A108625, the array of crystal ball sequences for the A_n lattices, is the Hilbert transform of A008459 (viewed as the triangle of coefficients of h-polynomials of n-dimensional associahedra of type B).
(5) A142992, the array of crystal ball sequences for the C_n lattices, is the Hilbert transform of A086645, the array of h-vectors for type C root polytopes.
(6) A108553, the array of crystal ball sequences for the D_n lattices, is the Hilbert transform of A108558, the array of h-vectors for type D root polytopes.
(7) A086764, read as a square array, is the Hilbert transform of the rencontres numbers A008290.
(8) A143409 is the Hilbert transform of triangle A073107.

Examples

			Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
		

Crossrefs

Cf. A008292, A039755, A052750 (first superdiagonal), A060187, A114172, A145901.

Programs

  • Maple
    T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);

Formula

T(n,k) = (2*k + 1)^n, (see equation 4.10 in [Franssens]). This array is the infinite Vandermonde matrix V(1,3,5,7, ....) having a LDU factorization equal to A039755 * diag(2^n*n!) * transpose(A007318).
Showing 1-10 of 21 results. Next