A000169
Number of labeled rooted trees with n nodes: n^(n-1).
Original entry on oeis.org
1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841, 5242880000000000000000000
Offset: 1
For n=3, a(3)=9 because there are exactly 9 binary relations on A={1, 2} that are functions, namely: {}, {(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,1)} and {(1,2),(2,2)}. - _Dennis P. Walsh_, Apr 21 2011
G.f. = x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 + 117649*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 169.
- Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
- Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppnen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 63.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2, and p. 37, (5.52).
- N. J. A. Sloane, Table of n, a(n) for n = 1..100
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
- Washington Bomfim, Bijection between rooted forests and multigraphs without cycles except one loop in each connected component. [From _Washington Bomfim_, Sep 04 2010]
- David Callan, A Combinatorial Derivation of the Number of Labeled Forests, J. Integer Seqs., Vol. 6, 2003.
- Peter J. Cameron and Philippe Cara, Independent generating sets and geometries for symmetric groups, J. Algebra, Vol. 258, no. 2 (2002), 641-650.
- Robert Castelo and Arno Siebes, A characterization of moral transitive directed acyclic graph Markov models as trees, Technical Report CS-2000-44, Faculty of Computer Science, University of Utrecht.
- Robert Castelo and Arno Siebes, A characterization of moral transitive acyclic directed graph Markov models as labeled trees, Journal of Statistical Planning and Inference, Vol. 115, No. 1 (2003), pp. 235-259; alternative link.
- Frédéric Chapoton, Florent Hivert and Jean-Christophe Novelli, A set-operad of formal fractions and dendriform-like sub-operads, Journal of Algebra, Vol. 465 (2016), pp. 322-355; arXiv preprint, arXiv:1307.0092 [math.CO], 2013.
- Ali Chouria, Vlad-Florin Drǎgoi, Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, VOl. 5 (1996), pp. 329-359; alternative link.
- Nick Hobson, Solution to puzzle 48: Exponential equation.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 67.
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
- Jean-Louis Loday and Bruno Vallette, Algebraic Operads, version 0.99, 2012.
- G. Pólya, With, or Without, Motivation?, Amer. Math. Monthly, Vol. 56, No. 10 (1949), pp. 684-691. Reprinted in "A Century of Mathematics", John Ewing (ed.), Math. Assoc. of Amer., 1994, pp. 195-200 (the reference there is wrong).
- Gwenaël Richomme, Characterization of infinite LSP words and endomorphisms preserving the LSP property, International Journal of Foundations of Computer Science, Vol. 30, No. 1 (2019), pp. 171-196; arXiv preprint, arXiv:1808.02680 [cs.DM], 2018.
- Marko Riedel, math.stackexchange.com, Proof of an identity relating the tree function T(z) and the second order Eulerian numbers. Feb. 28, 2021.
- Marko Riedel, math.stackexchange.com, Asymptotics of tree function statistics using Pusieux series
- Frank Ruskey, Information on Rooted Trees.
- N. J. A. Sloane, Illustration of initial terms
- Zhi-Wei Sun, Fedor Petrov, A surprising identity, discussion in MathOverflow, Jan 17 2019.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
- Eric Weisstein's World of Mathematics, Graph Vertex.
- Dimitri Zvonkine, An algebra of power series arising in the intersection theory of moduli spaces of curves and in the enumeration of ramified coverings of the sphere, arXiv:math/0403092 [math.AG], 2004.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
Cf.
A000055,
A000081,
A000142,
A000272,
A000312,
A002720,
A007778,
A007830,
A008785-
A008791,
A055860,
A002061,
A052746,
A052756,
A052764,
A052789,
A051129,
A098686,
A247363,
A055302,
A248120,
A130293,
A053506-
A053509,
A262974.
-
a000169 n = n ^ (n - 1) -- Reinhard Zumkeller, Sep 14 2014
-
[n^(n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2015
-
A000169 := n -> n^(n-1);
# second program:
spec := [A, {A=Prod(Z, Set(A))}, labeled]; [seq(combstruct[count](spec, size=n), n=1..20)];
# third program:
A000169 := n -> add((-1)^(n+k-1)*pochhammer(n, k)*Stirling2(n-1, k), k = 0..n-1):
seq(A000169(n), n = 1 .. 23); # Mélika Tebni, May 07 2023
-
Table[n^(n - 1), {n, 1, 20}] (* Stefan Steinerberger, Apr 01 2006 *)
Range[0, 18]! CoefficientList[ Series[ -LambertW[-x], {x, 0, 18}], x] // Rest (* Robert G. Wilson v, updated by Jean-François Alcover, Oct 14 2019 *)
(* Next, a signed version A000169 from the Vandermonde determinant of (1,1/2,...,1/n) *)
f[j_] := 1/j; z = 12;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}]
1/% (* A203421 *)
Table[v[n]/v[n + 1], {n, 1, z - 1}] (* A000169 signed *)
(* Clark Kimberling, Jan 02 2012 *)
a[n_]:=Det[Table[If[i==0,1,If[i<=j,i,i-n]],{i,0,n-1},{j,0,n-1}]]; Array[a,20] (* Stefano Spezia, Mar 12 2024 *)
-
n^(n-1) $ n=1..20 /* Zerinvary Lajos, Apr 01 2007 */
-
a(n) = n^(n-1)
-
def a(n): return n**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Sep 19 2021
-
from sympy import Matrix
def P(n): return [[ (i-n if i > j else i) + (i == 0) for j in range(n) ] for i in range(n)]
print(*(Matrix(P(n)).det() for n in range(1, 21)), sep=', ') # C.S. Elder, Mar 12 2024
A003101
a(n) = Sum_{k = 1..n} (n - k + 1)^k.
Original entry on oeis.org
0, 1, 3, 8, 22, 65, 209, 732, 2780, 11377, 49863, 232768, 1151914, 6018785, 33087205, 190780212, 1150653920, 7241710929, 47454745803, 323154696184, 2282779990494, 16700904488705, 126356632390297, 987303454928972, 7957133905608836, 66071772829247409
Offset: 0
For n = 3 we get a(3) = 3^1 + 2^2 + 1^3 = 8. For n = 4 we get a(4) = 4^1 + 3^2 + 2^3 + 1^4 = 22.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Charles R Greathouse IV, Table of n, a(n) for n = 0..598
- Henry W. Gould, Letters to N. J. A. Sloane, Oct 1973 and Jan 1974.
- Mathematics Stack Exchange, Asymptotics of 1^n+2^(n-1)+3^(n-2)+...+(n-1)^2+n^1, 2011.
- Daniel Ropp, Problem 2 - 16th Austrian Mathematical Olympiad (Final round), Crux Mathematicorum, page 7, Vol. 14, Jun. 88.
- The IMO compendium, Problem 2, 16th Austrian Mathematical Olympiad, 1985.
- Index to sequences related to Olympiads.
-
a003101 n = sum $ zipWith (^) [0 ..] [n + 1, n .. 1]
-- Reinhard Zumkeller, Sep 14 2014
-
[n eq 0 select 0 else (&+[(n-j+1)^j: j in [1..n]]): n in [0..50]]; // G. C. Greubel, Oct 26 2022
-
A003101 := n->add((n-k+1)^k, k=1..n);
a:= n-> add((n-j+1)^j, j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 07 2008
-
Table[Sum[(n-k+1)^k,{k,n}],{n,0,25}] (* Harvey P. Dale, Aug 14 2011 *)
-
a(n)=sum(k=1,n,(n-k+1)^k) \\ Charles R Greathouse IV, Oct 31 2011
-
def A003101(n): return sum( (n-k+1)^k for k in range(1,n+1))
[A003101(n) for n in range(50)] # G. C. Greubel, Oct 26 2022
A089072
Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1
Triangle begins:
1;
1, 4;
1, 8, 27;
1, 16, 81, 256;
1, 32, 243, 1024, 3125;
1, 64, 729, 4096, 15625, 46656;
...
Related to triangle of Eulerian numbers
A008292.
-
a089072 = flip (^)
a089072_row n = map (a089072 n) [1..n]
a089072_tabl = map a089072_row [1..] -- Reinhard Zumkeller, Mar 18 2013
-
[k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
-
Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
-
flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022
More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
A004248
Array read by ascending antidiagonals: A(n, k) = k^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 27, 16, 5, 1, 0, 1, 32, 81, 64, 25, 6, 1, 0, 1, 64, 243, 256, 125, 36, 7, 1, 0, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 0, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 0, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0
Seen as an array that is read by ascending antidiagonals:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 1, 4, 9, 16, 25, 36, 49, 64, ...
[3] 0, 1, 8, 27, 64, 125, 216, 343, 512, ...
[4] 0, 1, 16, 81, 256, 625, 1296, 2401, 4096, ...
[5] 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, ...
[6] 0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, ...
[7] 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, ...
-
T[x_, y_] := If[y == 0, 1, (x - y)^y];
Table[T[x, y], {x, 0, 11}, {y, x, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2017 *)
-
T(x, y) = x^y \\ Charles R Greathouse IV, Feb 07 2017
-
def Arow(n, len): return [k**n for k in range(len)]
for n in range(8): print([n], Arow(n, 9)) # Peter Luschny, Apr 16 2024
A051128
Table T(n,k) = n^k read by upwards antidiagonals (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 11, 100, 729, 4096, 16807, 46656, 78125, 65536, 19683, 1024, 1
Offset: 1
Table begins
1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, ...
3, 9, 27, 81, 243, ...
4, 16, 64, 256, 1024, ...
-
A051128 := proc(n) # Boris Putievskiy's formula
a := floor((sqrt(8*n-7)+1)/2);
b := (a+a^2)/2-n;
c := (a-a^2)/2+n;
(b+1)^c end:
seq(A051128(n), n=1..61); # Peter Luschny, Dec 14 2012
# second Maple program:
T:= (n, k)-> n^k:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Table[n^(k - n + 1), {k, 1, 11}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Dec 14 2012 *)
-
T(n,k) = n^k \\ Charles R Greathouse IV, Feb 09 2017
A003320
a(n) = max_{k=0..n} k^(n-k).
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 27, 81, 256, 1024, 4096, 16384, 78125, 390625, 1953125, 10077696, 60466176, 362797056, 2176782336, 13841287201, 96889010407, 678223072849, 4747561509943, 35184372088832, 281474976710656, 2251799813685248
Offset: 0
a(5) = max(5^0, 4^1, 3^2, 2^3, 1^4, 0^5) = max(1,4,9,8,1,0) = 9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 231.
- Seiichi Manyama, Table of n, a(n) for n = 0..599 (terms 0..100 from T. D. Noe).
- D. Easdown, Minimal faithful permutation and transformation representations of groups and semigroups, Contemporary Math. (1992), Vol. 131 (Part 3), 75-84.
- R. Gray and J. D. Mitchell, Largest subsemigroups of the full transformation monoid, Discrete Math., 308 (2008), 4801-4810.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- I. Tomescu, Excerpts from "Introducese in Combinatorica" (1972), pp. 230-1, 44-5, 128-9. (Annotated scanned copy)
-
a003320 n = maximum $ zipWith (^) [0 .. n] [n, n-1 ..]
-- Reinhard Zumkeller, Jun 24 2013
-
Join[{1},Max[#]&/@Table[k^(n-k),{n,25},{k,n}]] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n) = vecmax(vector(n+1, k, (k-1)^(n-k+1))); \\ Michel Marcus, Jun 13 2017
Easdown reference from Michail Kats (KatsMM(AT)info.sgu.ru)
A265583
Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1
1 2 3 4 5 6 7
0 2 6 12 20 30 42
0 2 12 36 80 150 252
0 2 24 108 320 750 1512
0 2 48 324 1280 3750 9072
0 2 96 972 5120 18750 54432
0 2 192 2916 20480 93750 326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
-
T:= function(n,k)
if (n=1 and k=1) then return 1;
else return k*(k-1)^(n-k-1);
fi;
end;
Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
-
T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
[T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
-
A265583 := proc(n,k)
k*(k-1)^(n-1) ;
end proc:
seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
-
T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
-
T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
-
def T(n, k):
if (n==k==1): return 1
else: return k*(k-1)^(n-k-1)
[[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
A292741
Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0
A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
1, 2, 5, 10, 17, 26, 37, 50, ...
1, 3, 11, 31, 69, 131, 223, 351, ...
2, 5, 24, 95, 278, 657, 1340, 2459, ...
2, 7, 50, 287, 1114, 3287, 8042, 17215, ...
4, 11, 104, 865, 4460, 16439, 48256, 120509, ...
4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
-
b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)
A332101
Least m such that m^n <= Sum_{k
Original entry on oeis.org
2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97
Offset: 0
For n = 0, m^0 > Sum_{0 < k < m} k^0 = 0 for m = 0, 1 (empty sums), but 2^0 = Sum_{0 < k < 2} k^0 = 1, so a(0) = 2.
For n = 1, 1^1 > Sum_{0 < k < 1} k^1 = 0 (empty sum) and 2^1 > Sum_{0 < k < 2} k^1 = 1, but 3^1 <= Sum_{0 < k < 3} k^1 = 1 + 2, so a(1) = 3.
To find a(n) one can add up terms in row n of the table k^n until the sum equals or exceeds the next term, whose column number k is then a(n):
n |k: 1 2 3 4 5 6 Comment
--+---------------------------------------------------------------
1 | 1 2 3 1 < 2 but 1 + 2 >= 3, so a(1) = 3.
2 | 1 4 9 16 25 1 + 4 + 9 + 16 > 25, and a(2) = 5.
3 | 1 8 27 64 125 216 1 + 8 + 27 + 64 + 125 > 216: a(3) = 6.
Cf.
A078607,
A332097 (maximum of E(s), cf comments),
A030052 (least k such that k^n = sum of distinct n-th powers),
A332065 (all k such that k^n is a sum of distinct n-th powers).
-
Table[Block[{m = 1, s = 0}, While[m^n > s, s = s + m^n; m++]; m], {n, 0, 66}] (* Michael De Vlieger, Apr 30 2020 *)
-
apply( A332101(n,s)=for(m=1,oo, s
A247358
Triangle read by rows: n-th row contains powers b^e with b + e = n + 1 in natural order.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 4, 8, 9, 1, 5, 16, 16, 27, 1, 6, 25, 32, 64, 81, 1, 7, 36, 64, 125, 243, 256, 1, 8, 49, 128, 216, 625, 729, 1024, 1, 9, 64, 256, 343, 1296, 2187, 3125, 4096, 1, 10, 81, 512, 512, 2401, 6561, 7776, 15625, 16384, 1, 11, 100, 729, 1024, 4096, 16807, 19683, 46656, 65536, 78125
Offset: 1
. 1 | 1 | 1^1
. 2 | 1 2 | 1^2 2^1
. 3 | 1 3 4 | 1^3 3^1 2^2
. 4 | 1 4 8 9 | 1^4 4^1 2^3 3^2
. 5 | 1 5 16 16 27 | 1^5 5^1 2^4 4^2 3^3
. 6 | 1 6 25 32 64 81 | 1^6 6^1 5^2 2^5 4^3 3^4
. 7 | 1 7 36 64 125 243 256 | 1^7 7^1 6^2 2^6 5^3 3^5 4^4
. 8 | 1 8 49 128 216 625 729 1024 | 1^8 8^1 7^2 2^7 6^3 5^4 3^6 4^5 .
-
import Data.List (sort)
a247358 n k = a247358_tabl !! (n-1) !! (k-1)
a247358_row n = a247358_tabl !! (n-1)
a247358_tabl = map sort a051129_tabl
-
Table[Table[k^(n-k+1), {k, 1, n}] // Sort, {n, 1, 11}] // Flatten (* Jean-François Alcover, Nov 18 2019 *)
-
row(n) = vecsort(vector(n, k, k^(n-k+1))); \\ Michel Marcus, Jan 24 2022
-
from itertools import chain
A247358_list = list(chain.from_iterable(sorted((b+1)**(n-b) for b in range(n)) for n in range(1,8))) # Chai Wah Wu, Sep 14 2014
Showing 1-10 of 17 results.
Comments