cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 382 results. Next

A274390 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 9, 0, 1, 6, 30, 64, 0, 1, 8, 63, 332, 625, 0, 1, 10, 108, 948, 4880, 7776, 0, 1, 12, 165, 2056, 18645, 89742, 117649, 0, 1, 14, 234, 3800, 50680, 454158, 1986124, 2097152, 0, 1, 16, 315, 6324, 112625, 1537524, 13221075, 51471800, 43046721, 0, 1, 18, 408, 9772, 219000, 4090980, 55494712, 448434136, 1530489744, 1000000000, 0, 1, 20, 513, 14288, 387205, 9266706, 176238685, 2325685632, 17386204761, 51395228090, 25937424601, 0, 1, 22, 630, 20016, 637520, 18704322, 463975764, 8793850560, 111107380464, 759123121050, 1924687118684, 743008370688, 0, 1, 24, 759, 27100, 993105, 34617288, 1067280319, 26858490392, 499217336145, 5964692819140, 36882981687519, 79553145323940, 23298085122481, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Comments

See table A274391 for the coefficients in exp( T^n(x) ), n>=0, where T^n(x) is the e.g.f. of the n-th row of this table.

Examples

			This table begins:
1,  0,   0,     0,       0,        0,          0,            0, ...;
1,  2,   9,    64,     625,     7776,     117649,      2097152, ...;
1,  4,  30,   332,    4880,    89742,    1986124,     51471800, ...;
1,  6,  63,   948,   18645,   454158,   13221075,    448434136, ...;
1,  8, 108,  2056,   50680,  1537524,   55494712,   2325685632, ...;
1, 10, 165,  3800,  112625,  4090980,  176238685,   8793850560, ...;
1, 12, 234,  6324,  219000,  9266706,  463975764,  26858490392, ...;
1, 14, 315,  9772,  387205, 18704322, 1067280319,  70311813880, ...;
1, 16, 408, 14288,  637520, 34617288, 2217367600, 163802295616, ...;
1, 18, 513, 20016,  993105, 59879304, 4254311817, 348285415872, ...;
1, 20, 630, 27100, 1480000, 98110710, 7656893020, 688058734520, ...;
...
where the e.g.f.s of the rows are iterations of T(x) and begin:
T^0(x) = x;
T^1(x) = T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...;
T^2(x) = T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...;
T^3(x) = T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...;
T^4(x) = T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...;
...
where T^n(x)/exp( T^n(x) ) = T^n( x/exp(x) ) = T^(n-1)(x).
Also we have
T(x) = x*exp( T(x) );
T^2(x) = x*exp( T(x) + T^2(x) );
T^3(x) = x*exp( T(x) + T^2(x) + T^3(x) );
T^4(x) = x*exp( T(x) + T^2(x) + T^3(x) + T^4(x) ); ...
		

Crossrefs

Cf. A274570 (transforms diagonals).
Cf. A274740 (same table, but read differently).

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
    /* Print this table as a square array */
    for(n=0,10,for(k=1,10,print1(T(n,k),", "));print(""))
    /* Print this table as a flattened array */
    for(n=0,12,for(k=1,n,print1(T(n-k,k),", "));)

Formula

Let T^n(x) denote the n-th iteration of Euler's tree function T(x), then the coefficients in T^n(x) form the n-th row of this table, and the functions satisfy:
(1) T^n(x) = x * exp( Sum_{i=1..n} T^i(x) ).
(2) T^n(x) = T^(n-1)(x) * exp( T^n(x) ).
(3) T^n(x) = T^(n+1)( x/exp(x) ).

A207833 E.g.f.: T(T(x)), where T(x) is the e.g.f. for labeled rooted trees, A000169.

Original entry on oeis.org

1, 4, 30, 332, 4880, 89742, 1986124, 51471800, 1530489744, 51395228090, 1924687118684, 79553145323940, 3598161485778808, 176797212122233094, 9378715234039802340, 534259395682874552048, 32528761111972930621472, 2108146039402630977388530, 144899759883703796130871468, 10528261771566724089621962780
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2012

Keywords

Comments

Exponential series reversal gives A185298 with alternating signs: 1, -4, 18, -92, 520, ... . - Vladimir Reshetnikov, Aug 04 2019

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...+ A000169(n)*x^n/n! +...
where e.g.f. A(x) = T(T(x)).
		

Crossrefs

Programs

  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[ 0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[t,{x,0,nn}]],x] (* Geoffrey Critzer, Sep 16 2012 *)
    Rest[CoefficientList[Series[-LambertW[LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 24 2014 *)
  • PARI
    {a(n)=if(n==0||n==1, 1, n^(n-1)-sum(k=1, n-1, (-1)^(n-k)*binomial(n, k)*k^(n-k)*a(k)))} \\ Paul D. Hanna, Nov 21 2012

Formula

a(n) = 1/n * Sum_{k=1..n} C(n,k)*k^k*n^(n-k). [Vladimir Kruchinin, Sep 24 2012]
a(n) = n^(n-1) - Sum_{k=1..n-1} (-1)^(n-k) * C(n, k) * k^(n-k) * a(k) for n>1 with a(1)=1. - Paul D. Hanna, Nov 21 2012
E.g.f. A(x) satisfies: A(x) = Sum_{n>=1} n^(n-1)*T(x)^n/n!, by definition.
E.g.f. A(x) satisfies: A(x/exp(x)) = T(x) = Sum_{n>=1} n^(n-1)*x^n/n!. - Paul D. Hanna, Jul 04 2013
a(n) ~ n^(n-1) * exp(n*exp(-1)) / sqrt(1-exp(-1)). - Vaclav Kotesovec, Feb 24 2014

A055860 a(n) = A000169(n+1) if n > 0; a(0) = 0.

Original entry on oeis.org

0, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968
Offset: 0

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Crossrefs

Second column of triangle A055858. Cf. A000169, A055858, A000312.

Formula

a(0) = 0; for n >= 1, a(n) = (n+1)^n.
E.g.f.: -W(-x)/((1+W(-x))*x) - 1 = -(d/dx)W(x) - 1, W(x) principal branch of Lambert's function.

A274570 Triangle, read by rows, that transforms diagonals in the array A274390 of coefficients in successive iterations of Euler's tree function (A000169).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 127, 20, 3, 1, 4377, 470, 39, 4, 1, 245481, 19912, 1125, 64, 5, 1, 20391523, 1326382, 56505, 2188, 95, 6, 1, 2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1, 360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1, 70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1, 17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

This triangle also transforms diagonals in the array A274391 into each other, if we omit column 0 from those diagonals. The e.g.f. of row n of array A274391 equals exp(T^n(x)), where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).

Examples

			This triangle T(n,k), n>=0, k=0..n, begins:
  1;
  1, 1;
  7, 2, 1;
  127, 20, 3, 1;
  4377, 470, 39, 4, 1;
  245481, 19912, 1125, 64, 5, 1;
  20391523, 1326382, 56505, 2188, 95, 6, 1;
  2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1;
  360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1;
  70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1;
  17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1;
  ...
Let D denote the triangular matrix defined by D(n,k) = T(n,k)/(n-k)!, such that D begins:
  1;
  1, 1;
  7/2!, 2, 1;
  127/3!, 20/2!, 3, 1;
  4377/4!, 470/3!, 39/2!, 4, 1;
  245481/5!, 19912/4!, 1125/3!, 64/2!, 5, 1;
  20391523/6!, 1326382/5!, 56505/4!, 2188/3!, 95/2!, 6, 1;
  ...
then D transforms diagonals in the array A274390 into each other:
  D * [1, 2/2, 30/3!, 948/4!, 50680/5!, 4090980/6!, ...] =
  [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...];
  D * [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...] =
  [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...];
  D * [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...] =
  [1, 8/2!, 165/3!, 6324/4!, 387205/5!, 34617288/6!, ...];
  ...
where array A274390 consists of coefficients in the iterations of Euler's tree function (A000169), and begins:
  1,  0,   0,     0,       0,        0,          0, ...;
  1,  2,   9,    64,     625,     7776,     117649, ...;
  1,  4,  30,   332,    4880,    89742,    1986124, ...;
  1,  6,  63,   948,   18645,   454158,   13221075, ...;
  1,  8, 108,  2056,   50680,  1537524,   55494712, ...;
  1, 10, 165,  3800,  112625,  4090980,  176238685, ...;
  1, 12, 234,  6324,  219000,  9266706,  463975764, ...;
  1, 14, 315,  9772,  387205, 18704322, 1067280319, ...;
  1, 16, 408, 14288,  637520, 34617288, 2217367600, ...;
  ...
Note that this triangle also transforms the diagonals of table A274391 into each other, if we omit column 0 from those diagonals.
After truncating column 0, table A274391 begins:
  1,  1,   1,     1,       1,         1,          1, ...;
  1,  3,  16,   125,    1296,     16807,     262144, ...;
  1,  5,  43,   525,    8321,    162463,    3774513, ...;
  1,  7,  82,  1345,   28396,    734149,   22485898, ...;
  1,  9, 133,  2729,   71721,   2300485,   87194689, ...;
  1, 11, 196,  4821,  151376,   5787931,  261066156, ...;
  1, 13, 271,  7765,  283321,  12567187,  656778529, ...;
  1, 15, 358, 11705,  486396,  24539593, 1457297878, ...;
  ...
for which the e.g.f. of row n equals exp(T^n(x)) - 1, where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).
For example:
  D * [1, 3/2!, 43/3!, 1345/4!, 71721/5!, 5787931/6!, ...] =
  [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...];
  D * [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...] =
  [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...];
  D * [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...] =
  [1, 9/2!, 196/3!, 7765/4!, 486396/5!, 44223529/6!, ...];
  ...
The matrix inverse of triangle D, as shown with elements [D^-1][n,k] * (n-k)!, begins:
  1;
  -1, 1;
  -3, -2, 1;
  -40, -8, -3, 1;
  -1155, -140, -15, -4, 1;
  -57696, -5040, -324, -24, -5, 1;
  -4417175, -302092, -13923, -616, -35, -6, 1;
  -479964528, -26990720, -970848, -30720, -1040, -48, -7, 1;
  -70186001319, -3352727646, -98952435, -2439864, -58995, -1620, -63, -8, 1;
  -13284014648320, -551688200000, -13810202640, -279099200, -5254000, -102960, -2380, -80, -9, 1;
  -3158467118697099, -116039984093000, -2522473482375, -43202840076, -666167975, -10157796, -167475, -3344, -99, -10, 1;
  ...
The matrix square of triangle D, as shown with elements [D^2][n,k] * (n-k)!, begins:
  1;
  2, 1;
  18, 4, 1;
  377, 52, 6, 1;
  14304, 1414, 102, 8, 1;
  859977, 65904, 3411, 168, 10, 1;
  75306424, 4699274, 188496, 6668, 250, 12, 1;
  9061819643, 476161840, 15542811, 426144, 11485, 348, 14, 1;
  1435831150784, 65093379838, 1788015528, 39885108, 833280, 18162, 462, 16, 1;
  289948340816657, 11551390491440, 273593165397, 5134299808, 87266525, 1474704, 26999, 592, 18, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print this triangle: */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A227278 E.g.f.: T(T(T(x))), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 6, 63, 948, 18645, 454158, 13221075, 448434136, 17386204761, 759123121050, 36882981687519, 1974616464026484, 115536647641839333, 7336947898087080406, 502660682907018997755, 36961205206337621142192, 2903732354672613314658225, 242753209611983811853905330
Offset: 1

Views

Author

Paul D. Hanna, Jul 04 2013

Keywords

Examples

			E.g.f.: A(x) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...
where A(x) = T(T(T(x))).
Related expansions:
A(x/exp(x)) = A(x)/exp(A(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
exp(A(x)) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...+ A268653(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-LambertW[LambertW[LambertW[-x]]], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Jul 05 2013 *)
  • PARI
    /* E.g.f.: A(x) = T(T(T(x))) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(T,x,subst(T, x, T)), n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = -LambertW(LambertW(LambertW(-x))) */
    {a(n)=local(LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    n!*polcoeff(-subst(LambertW,x,subst(LambertW,x,subst(LambertW,x,-x))),n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

Given e.g.f. A(x), A(x/exp(x)) = A(x)/exp(A(x)) = T(T(x)) and equals the e.g.f. of A207833.
a(n) ~ n! * exp((1+exp(-1)+exp(-1-exp(-1)))*n)/(sqrt(2*Pi*(1-exp(-1))*(1-exp(-1-exp(-1))))*n^(3/2)). - Vaclav Kotesovec, Jul 05 2013

A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.

Original entry on oeis.org

0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A000169 with signs and 1-exp(x).

Programs

  • Mathematica
    nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
    Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]

A038051 G.f.: B(x/(1-x)) where B is g.f. of A000169.

Original entry on oeis.org

1, 3, 14, 98, 944, 11642, 175108, 3108310, 63601168, 1473864722, 38152990484, 1091172974102, 34169139856024, 1162736848398010, 42723615842296540, 1685853467536076798, 71101435046807892512, 3191843270961299033762, 151956292916451992949028
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

E.g.f. of A048802.

Programs

  • Mathematica
    CoefficientList[Series[E^x*(-LambertW[-x]/(1+LambertW[-x])/x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)

Formula

E.g.f.: int(exp(x)*(-LambertW(-x)/(1+LambertW(-x))/x), x). a(n) = Sum_{k=0..n-1} binomial(n-1, k)*(k+1)^k. - Vladeta Jovovic, Apr 12 2003
a(n) ~ n^(n-1) * exp(exp(-1)). - Vaclav Kotesovec, Feb 17 2014

Extensions

Corrected by Christian G. Bower, Mar 15 1999

A152917 A000169 prefixed by an initial 0.

Original entry on oeis.org

0, 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841
Offset: 0

Views

Author

ShaoJun Ying (dolphinysj(AT)gmail.com), Dec 15 2008

Keywords

Comments

A variant of A000169, which is the main entry for this sequence. - N. J. A. Sloane, Dec 19 2008

Examples

			a(10) = 10^9 = 1000000000.
		

Crossrefs

Cf. A000169.

Programs

  • Mathematica
    Join[{0},Table[n^(n-1),{n,20}]] (* Harvey P. Dale, Jan 28 2017 *)

Formula

a(n) = 0 if n = 0, otherwise a(n) = n^(n-1).
E.g.f.: A(x)=x*G(0) ; G(k)= 1 + x*(2*k+2)^(2*k)/((2*k+1)^(2*k) - x*(2*k+1)^(2*k)*(2*k+3)^(2*k+1)/(x*(2*k+3)^(2*k+1) + (2*k+2)^(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 30 2011
E.g.f.: -LambertW(-x). - Alois P. Heinz, Feb 26 2020

A268653 E.g.f.: exp( T(T(T(x))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 1, 7, 82, 1345, 28396, 734149, 22485898, 796769201, 32084546824, 1447917011461, 72411962077126, 3976481464087609, 237939307837951708, 15412492927027232261, 1074675869343994244266, 80270802348342665849569, 6395153963612453962942096, 541390375948749181692141061, 48536543026953818449535683054, 4594206854845500504888845269481, 457878082780635055560866092165156, 47930551834845432770784732668907205
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...
where A(x) = A( x/exp(x) )^A(x).
RELATED SERIES.
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +...
then
(1) A(x) = W( x*W(x) * W(x*W(x)) ),
(2) A(x) = W( x*W(x) )^A(x),
(3) A(x) = exp( A(x) * x*W(x) * W(x*W(x)) ),
(4) A(x/exp(x)) = W(x*W(x)).
Let G(x) = A(x/exp(x)), which begins:
G(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +...
then W(x), G(x), and A(x) are in the family of functions that begin:
(1) W(x) = exp(x)^W(x) = exp(T(x)),
(2) G(x) = W(x)^G(x) = exp(T(T(x))),
(3) A(x) = G(x)^A(x) = exp(T(T(T(x)))), ...
where T(x) = -LambertW(-x) is Euler's tree function:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +...
		

Crossrefs

Programs

  • PARI
    /* E.g.f.: A(x) = exp(T(T(T(x))) ) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, T))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = W( x*W(x) * W(x*W(x)) ) */
    {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(W, x, subst(x*W, x, x*W)), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(-x)) ) */
    {a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, -x)) +x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = ( LambertW(LambertW(-x))/LambertW(-x) )^A(x) */
    {a(n)=local(A=1+x, W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n));
    for(i=1, n, A=subst(W,x,x*W)^A); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f. satisfies:
(1) A(x) = A(x/exp(x))^A(x).
(2) A(x) = W( x*W(x) * W(x*W(x)) ), where W(x) = LambertW(-x)/(-x).
(3) A(x) = W( x*W(x) )^A(x), where W(x) = LambertW(-x)/(-x).
(4) A(x) = exp( -A(x)*LambertW(LambertW(-x)) ).
(5) A(x) = ( LambertW(LambertW(-x)) / LambertW(-x) )^A(x).
(6) A(x/exp(x)) = exp(T(T(x))) = LambertW(LambertW(-x)) / LambertW(-x).
a(n) ~ exp(1 + (exp(-1) + exp(-1 - exp(-1)))*n) * n^(n-1) / sqrt((1 - exp(-1))*(1-exp(-1 - exp(-1)))). - Vaclav Kotesovec, Apr 01 2016

A274389 Main diagonal of rectangular array A274390 of coefficients in the iterations of Euler's tree function (A000169).

Original entry on oeis.org

1, 2, 30, 948, 50680, 4090980, 463975764, 70311813880, 13718193268896, 3348658563980040, 999698412743754460, 358297471515195652308, 151813934699349280088328, 75064081768759279536110316, 42833194538353991390132088540, 27937122503026656234469859408880, 20653210428143999114034181337343616, 17178393944175652034128269331788145680, 15970217696130529428248774113884778921452, 16497536217367322285994072192399435877530380, 18836957575278690757486149667782477659475272520
Offset: 0

Views

Author

Paul D. Hanna, Jun 24 2016

Keywords

Crossrefs

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {A274390(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
    /* Print A274390 */
    for(n=0,10,for(k=1,10,print1(A274390(n,k),", "));print("..."))
    /* Print this sequence, as the main diagonal of A274390 */
    for(n=0,20,print1(A274390(n,n+1),", "))
Showing 1-10 of 382 results. Next