cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A274570 Triangle, read by rows, that transforms diagonals in the array A274390 of coefficients in successive iterations of Euler's tree function (A000169).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 127, 20, 3, 1, 4377, 470, 39, 4, 1, 245481, 19912, 1125, 64, 5, 1, 20391523, 1326382, 56505, 2188, 95, 6, 1, 2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1, 360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1, 70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1, 17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

This triangle also transforms diagonals in the array A274391 into each other, if we omit column 0 from those diagonals. The e.g.f. of row n of array A274391 equals exp(T^n(x)), where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).

Examples

			This triangle T(n,k), n>=0, k=0..n, begins:
  1;
  1, 1;
  7, 2, 1;
  127, 20, 3, 1;
  4377, 470, 39, 4, 1;
  245481, 19912, 1125, 64, 5, 1;
  20391523, 1326382, 56505, 2188, 95, 6, 1;
  2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1;
  360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1;
  70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1;
  17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1;
  ...
Let D denote the triangular matrix defined by D(n,k) = T(n,k)/(n-k)!, such that D begins:
  1;
  1, 1;
  7/2!, 2, 1;
  127/3!, 20/2!, 3, 1;
  4377/4!, 470/3!, 39/2!, 4, 1;
  245481/5!, 19912/4!, 1125/3!, 64/2!, 5, 1;
  20391523/6!, 1326382/5!, 56505/4!, 2188/3!, 95/2!, 6, 1;
  ...
then D transforms diagonals in the array A274390 into each other:
  D * [1, 2/2, 30/3!, 948/4!, 50680/5!, 4090980/6!, ...] =
  [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...];
  D * [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...] =
  [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...];
  D * [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...] =
  [1, 8/2!, 165/3!, 6324/4!, 387205/5!, 34617288/6!, ...];
  ...
where array A274390 consists of coefficients in the iterations of Euler's tree function (A000169), and begins:
  1,  0,   0,     0,       0,        0,          0, ...;
  1,  2,   9,    64,     625,     7776,     117649, ...;
  1,  4,  30,   332,    4880,    89742,    1986124, ...;
  1,  6,  63,   948,   18645,   454158,   13221075, ...;
  1,  8, 108,  2056,   50680,  1537524,   55494712, ...;
  1, 10, 165,  3800,  112625,  4090980,  176238685, ...;
  1, 12, 234,  6324,  219000,  9266706,  463975764, ...;
  1, 14, 315,  9772,  387205, 18704322, 1067280319, ...;
  1, 16, 408, 14288,  637520, 34617288, 2217367600, ...;
  ...
Note that this triangle also transforms the diagonals of table A274391 into each other, if we omit column 0 from those diagonals.
After truncating column 0, table A274391 begins:
  1,  1,   1,     1,       1,         1,          1, ...;
  1,  3,  16,   125,    1296,     16807,     262144, ...;
  1,  5,  43,   525,    8321,    162463,    3774513, ...;
  1,  7,  82,  1345,   28396,    734149,   22485898, ...;
  1,  9, 133,  2729,   71721,   2300485,   87194689, ...;
  1, 11, 196,  4821,  151376,   5787931,  261066156, ...;
  1, 13, 271,  7765,  283321,  12567187,  656778529, ...;
  1, 15, 358, 11705,  486396,  24539593, 1457297878, ...;
  ...
for which the e.g.f. of row n equals exp(T^n(x)) - 1, where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).
For example:
  D * [1, 3/2!, 43/3!, 1345/4!, 71721/5!, 5787931/6!, ...] =
  [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...];
  D * [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...] =
  [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...];
  D * [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...] =
  [1, 9/2!, 196/3!, 7765/4!, 486396/5!, 44223529/6!, ...];
  ...
The matrix inverse of triangle D, as shown with elements [D^-1][n,k] * (n-k)!, begins:
  1;
  -1, 1;
  -3, -2, 1;
  -40, -8, -3, 1;
  -1155, -140, -15, -4, 1;
  -57696, -5040, -324, -24, -5, 1;
  -4417175, -302092, -13923, -616, -35, -6, 1;
  -479964528, -26990720, -970848, -30720, -1040, -48, -7, 1;
  -70186001319, -3352727646, -98952435, -2439864, -58995, -1620, -63, -8, 1;
  -13284014648320, -551688200000, -13810202640, -279099200, -5254000, -102960, -2380, -80, -9, 1;
  -3158467118697099, -116039984093000, -2522473482375, -43202840076, -666167975, -10157796, -167475, -3344, -99, -10, 1;
  ...
The matrix square of triangle D, as shown with elements [D^2][n,k] * (n-k)!, begins:
  1;
  2, 1;
  18, 4, 1;
  377, 52, 6, 1;
  14304, 1414, 102, 8, 1;
  859977, 65904, 3411, 168, 10, 1;
  75306424, 4699274, 188496, 6668, 250, 12, 1;
  9061819643, 476161840, 15542811, 426144, 11485, 348, 14, 1;
  1435831150784, 65093379838, 1788015528, 39885108, 833280, 18162, 462, 16, 1;
  289948340816657, 11551390491440, 273593165397, 5134299808, 87266525, 1474704, 26999, 592, 18, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print this triangle: */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

A274389 Main diagonal of rectangular array A274390 of coefficients in the iterations of Euler's tree function (A000169).

Original entry on oeis.org

1, 2, 30, 948, 50680, 4090980, 463975764, 70311813880, 13718193268896, 3348658563980040, 999698412743754460, 358297471515195652308, 151813934699349280088328, 75064081768759279536110316, 42833194538353991390132088540, 27937122503026656234469859408880, 20653210428143999114034181337343616, 17178393944175652034128269331788145680, 15970217696130529428248774113884778921452, 16497536217367322285994072192399435877530380, 18836957575278690757486149667782477659475272520
Offset: 0

Views

Author

Paul D. Hanna, Jun 24 2016

Keywords

Crossrefs

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {A274390(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
    /* Print A274390 */
    for(n=0,10,for(k=1,10,print1(A274390(n,k),", "));print("..."))
    /* Print this sequence, as the main diagonal of A274390 */
    for(n=0,20,print1(A274390(n,n+1),", "))

A274392 A diagonal of rectangular array A274390 of coefficients in the iterations of Euler's tree function (A000169).

Original entry on oeis.org

1, 4, 63, 2056, 112625, 9266706, 1067280319, 163802295616, 32300931452769, 7956776354536450, 2394142654816299431, 863996246301971667600, 368314015001746325448313, 183100281424495288847092386, 104989565698848905178879275775, 68778360046311927838608116567296, 51049027217135211093037275781929857, 42614907995326324626989103964953188610, 39750079580111447237206552931429888023399, 41188867531604111691413161924808444678694800, 47163303540183246052916530453746351377795346681
Offset: 1

Views

Author

Paul D. Hanna, Jun 24 2016

Keywords

Crossrefs

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {A274390(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
    /* Print A274390 */
    for(n=0,10,for(k=1,10,print1(A274390(n,k),", "));print("..."))
    /* Print this sequence, as a diagonal of A274390 */
    for(n=1,20,print1(A274390(n,n),", "))

A274391 Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 16, 1, 1, 1, 7, 43, 125, 1, 1, 1, 9, 82, 525, 1296, 1, 1, 1, 11, 133, 1345, 8321, 16807, 1, 1, 1, 13, 196, 2729, 28396, 162463, 262144, 1, 1, 1, 15, 271, 4821, 71721, 734149, 3774513, 4782969, 1, 1, 1, 17, 358, 7765, 151376, 2300485, 22485898, 101808185, 100000000, 1, 1, 1, 19, 457, 11705, 283321, 5787931, 87194689, 796769201, 3129525793, 2357947691, 1, 1, 1, 21, 568, 16785, 486396, 12567187, 261066156, 3815719969, 32084546824, 108063152091, 61917364224, 1, 1, 1, 23, 691, 23149, 782321, 24539593, 656778529, 13577077401, 189440927857, 1447917011461, 4143297446729, 1792160394037, 1, 1, 1, 25, 826, 30941, 1195696, 44223529, 1457297878, 39536713209, 800175234736, 10525328121221, 72411962077126, 174723134310277, 56693912375296, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Comments

The e.g.f. of each row is an infinite exponential tetration of the e.g.f. of the prior row: W_{n+1}(x) = W_n(x)^W_n(x)^W_n(x)^..., starting with exp(x) as the e.g.f. of row zero. All of these row functions may be expressed in terms of the LambertW(x) function.

Examples

			This table begins:
1, 1,  1,   1,     1,       1,         1,          1,            1, ...;
1, 1,  3,  16,   125,    1296,     16807,     262144,      4782969, ...;
1, 1,  5,  43,   525,    8321,    162463,    3774513,    101808185, ...;
1, 1,  7,  82,  1345,   28396,    734149,   22485898,    796769201, ...;
1, 1,  9, 133,  2729,   71721,   2300485,   87194689,   3815719969, ...;
1, 1, 11, 196,  4821,  151376,   5787931,  261066156,  13577077401, ...;
1, 1, 13, 271,  7765,  283321,  12567187,  656778529,  39536713209, ...;
1, 1, 15, 358, 11705,  486396,  24539593, 1457297878,  99609347825, ...;
1, 1, 17, 457, 16785,  782321,  44223529, 2940281793, 224869459201, ...;
1, 1, 19, 568, 23149, 1195696,  74840815, 5506111864, 465734919289, ...;
1, 1, 21, 691, 30941, 1754001, 120403111, 9709554961, 899836571001, ...;
...
in which the e.g.f. of row n equals W_n(x) = exp( T^n(x) ), where T^n(x) is the n-th iteration of the Euler tree function T(x).
The row functions begin:
W_0(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! +...;
W_1(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + +...+ (n+1)^(n-1)*x^n/n! +...;
W_2(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + +...+ A227176(n)*x^n/n! +...;
W_3(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! +...+ A268653(n)*x^n/n! +...;
W_4(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! +...+ A268654(n)*x^n/n! +...;
W_5(x) = 1 + x + 11*x^2/2! + 196*x^3/3! + 4821*x^4/4! + 151376*x^5/5! + 5787931*x^6/6! +...;
W_6(x) = 1 + x + 13*x^2/2! + 271*x^3/3! + 7765*x^4/4! + 283321*x^5/5! + 12567187*x^6/6! +...;
...
and satisfy:
(0) W_0(x) = exp(x),
(1) W_1(x) = exp(x)^W_1(x) = exp(T(x)) = LambertW(-x)/(-x),
(2) W_2(x) = W_1(x)^W_2(x) = exp(T(T(x))),
(3) W_3(x) = W_2(x)^W_3(x) = exp(T(T(T(x)))),
(4) W_4(x) = W_3(x)^W_4(x) = exp(T(T(T(T(x))))),
...
Euler's tree function T(x), and its iterates begin:
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...
T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...
...
Note that the e.g.f. of the n-th row function, W_n(x), also equals the ratio of two iterates of the Euler tree function: W_n(x) = T^n(x) / T^(n-1)(x).
See A274390 for the table of coefficients in these iterated tree functions.
		

Crossrefs

Cf. A274741 (same table, but read differently).

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE,n,k)),k)}
    /* Print this table as a square array */
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
    /* Print this table as a flattened array */
    for(n=0,12,for(k=0,n,print1(T(n-k,k),", "));)

Formula

Let W_n(x) denote the e.g.f. of the n-th row function of this table, and T^n(x) the n-th iteration of Euler's tree function T(x) (cf. A274390), then
(1) W_n(x) = exp( T^n(x) ).
(2) W_n(x) = T^n(x) / T^(n-1)(x).
(3) W_n(x) = W_{n+1}( x/exp(x) ).
(4) W_n(x) = W_n( x/exp(x) )^W_n(x).

A274571 Column 0 of triangle A274570.

Original entry on oeis.org

1, 1, 7, 127, 4377, 245481, 20391523, 2354116899, 360734454993, 70865037282673, 17367953099244051, 5195706189463681299, 1863485648739527246569, 789370246456579516316121, 389929989984983783920348611, 222178771969671609391720410691, 144648509476124539709343154760897, 106712830948451223242311469280356609, 88557950557114913966623605248882438755, 82132537612235618834557329353828430430755
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

Triangle A274570 transforms diagonals in the array A274390 of coefficients of successive iterations of Euler's tree function (A000169).

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print triangle A274570: */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    /* Print this sequence, which is column 0 */
    for(n=0,20,print1(T(n,0),", "))

A274572 Column 1 of triangle A274570.

Original entry on oeis.org

1, 2, 20, 470, 19912, 1326382, 127677580, 16767030632, 2880746218304, 627213971899610, 168767535712912684, 54994347890521005100, 21342142821229037730064, 9726400286221416303901358, 5143644030714149522751534524, 3124088412968372614077895431788, 2159818183532141245447039295746240, 1686295004858842334963772859214802354, 1476540037893212558044217633785452773068, 1440964034588041764141738802548853847618732
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

Triangle A274570 transforms diagonals in the array A274390 of coefficients of successive iterations of Euler's tree function (A000169).

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print triangle A274570: */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    /* Print this sequence, which is column 1 */
    for(n=0,20,print1(T(n+1,1),", "))

A274573 Column 2 of triangle A274570.

Original entry on oeis.org

1, 3, 39, 1125, 56505, 4354923, 476265591, 70056231213, 13329387478113, 3184105899176739, 932720103991595919, 328710383679927689157, 137188135970104212440721, 66909975066823379752742835, 37706189062081696231083478647, 24312515006613477431766856702797, 17784145956730483348850500758855969, 14647274671009402833580157237962722147, 13492886769176913829412675003231182928079
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

Triangle A274570 transforms diagonals in the array A274390 of coefficients of successive iterations of Euler's tree function (A000169).

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print triangle A274570: */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    /* Print this sequence, which is column 2 */
    for(n=0,20,print1(T(n+2,2),", "))

A274574 Central terms of triangle A274570.

Original entry on oeis.org

1, 2, 39, 2188, 247465, 47290506, 13732594855, 5645761143968, 3124313624563281, 2240929551882269890, 2023001689428835457551, 2245340983227461222262600, 3005921392102922941037743561, 4777188534537036418050441999458, 8892651921874938986718539648539335, 19167346139929272962512547586833106016, 47363669252787891219004826832547428944065, 133017373943189884985366059167726505579520322, 421334607602498277189468756234637306051458074191, 1495034827615578030423476599123008111000477082402040, 5906697677063490360959940664316005473632429506949424681
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2016

Keywords

Comments

Triangle A274570 transforms diagonals in the array A274390 of coefficients of successive iterations of Euler's tree function (A000169).

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x,
    LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
    M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]);
    (n-k)!*(P~*N~^-1)[n+1, k+1]}
    /* Print triangle : */
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    /* Print this sequence, which is central terms */
    for(n=0,20,print1(T(2*n,n),", "))

A274740 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 9, 4, 1, 0, 64, 30, 6, 1, 0, 625, 332, 63, 8, 1, 0, 7776, 4880, 948, 108, 10, 1, 0, 117649, 89742, 18645, 2056, 165, 12, 1, 0, 2097152, 1986124, 454158, 50680, 3800, 234, 14, 1, 0, 43046721, 51471800, 13221075, 1537524, 112625, 6324, 315, 16, 1, 0, 1000000000, 1530489744, 448434136, 55494712, 4090980, 219000, 9772, 408, 18, 1, 0, 25937424601, 51395228090, 17386204761, 2325685632, 176238685, 9266706, 387205, 14288, 513, 20, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2016

Keywords

Comments

See examples and formulas at A274390, which is the main entry for this table.
This entry is the same as table A274390, but read by antidiagonals from top down.

Examples

			See examples at A274390, which is the main entry for this table.
This table begins:
1,  0,   0,     0,       0,        0,          0, ...;
1,  2,   9,    64,     625,     7776,     117649, ...;
1,  4,  30,   332,    4880,    89742,    1986124, ...;
1,  6,  63,   948,   18645,   454158,   13221075, ...;
1,  8, 108,  2056,   50680,  1537524,   55494712, ...;
1, 10, 165,  3800,  112625,  4090980,  176238685, ...;
1, 12, 234,  6324,  219000,  9266706,  463975764, ...;
1, 14, 315,  9772,  387205, 18704322, 1067280319, ...;
1, 16, 408, 14288,  637520, 34617288, 2217367600, ...;
...
This table may also be written as a triangle:
1;
0, 1;
0, 2, 1;
0, 9, 4, 1;
0, 64, 30, 6, 1;
0, 625, 332, 63, 8, 1;
0, 7776, 4880, 948, 108, 10, 1;
0, 117649, 89742, 18645, 2056, 165, 12, 1;
0, 2097152, 1986124, 454158, 50680, 3800, 234, 14, 1;
0, 43046721, 51471800, 13221075, 1537524, 112625, 6324, 315, 16, 1;
0, 1000000000, 1530489744, 448434136, 55494712, 4090980, 219000, 9772, 408, 18, 1, 0;
...
		

Crossrefs

Cf. A274390.

Programs

  • PARI
    {ITERATE(F, n, k) = my(G=x +x*O(x^k)); for(i=1, n, G=subst(G, x, F)); G}
    {T(n, k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE, n, k), k)}
    /* Print this table as a rectangular array */
    for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print(""))
    /* Print this table as a triangle */
    for(n=1, 12, for(k=0, n-1, print1(T(k, n-k), ", "));print("") )
    /* Print this table as a flattened array */
    for(n=0, 12, for(k=0, n-1, print1(T(k, n-k), ", ")); )

Formula

See formulas at A274390, which is the main entry for this table.
Showing 1-9 of 9 results.