A274570 Triangle, read by rows, that transforms diagonals in the array A274390 of coefficients in successive iterations of Euler's tree function (A000169).
1, 1, 1, 7, 2, 1, 127, 20, 3, 1, 4377, 470, 39, 4, 1, 245481, 19912, 1125, 64, 5, 1, 20391523, 1326382, 56505, 2188, 95, 6, 1, 2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1, 360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1, 70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1, 17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1
Offset: 0
Examples
This triangle T(n,k), n>=0, k=0..n, begins: 1; 1, 1; 7, 2, 1; 127, 20, 3, 1; 4377, 470, 39, 4, 1; 245481, 19912, 1125, 64, 5, 1; 20391523, 1326382, 56505, 2188, 95, 6, 1; 2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1; 360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1; 70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1; 17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1; ... Let D denote the triangular matrix defined by D(n,k) = T(n,k)/(n-k)!, such that D begins: 1; 1, 1; 7/2!, 2, 1; 127/3!, 20/2!, 3, 1; 4377/4!, 470/3!, 39/2!, 4, 1; 245481/5!, 19912/4!, 1125/3!, 64/2!, 5, 1; 20391523/6!, 1326382/5!, 56505/4!, 2188/3!, 95/2!, 6, 1; ... then D transforms diagonals in the array A274390 into each other: D * [1, 2/2, 30/3!, 948/4!, 50680/5!, 4090980/6!, ...] = [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...]; D * [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...] = [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...]; D * [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...] = [1, 8/2!, 165/3!, 6324/4!, 387205/5!, 34617288/6!, ...]; ... where array A274390 consists of coefficients in the iterations of Euler's tree function (A000169), and begins: 1, 0, 0, 0, 0, 0, 0, ...; 1, 2, 9, 64, 625, 7776, 117649, ...; 1, 4, 30, 332, 4880, 89742, 1986124, ...; 1, 6, 63, 948, 18645, 454158, 13221075, ...; 1, 8, 108, 2056, 50680, 1537524, 55494712, ...; 1, 10, 165, 3800, 112625, 4090980, 176238685, ...; 1, 12, 234, 6324, 219000, 9266706, 463975764, ...; 1, 14, 315, 9772, 387205, 18704322, 1067280319, ...; 1, 16, 408, 14288, 637520, 34617288, 2217367600, ...; ... Note that this triangle also transforms the diagonals of table A274391 into each other, if we omit column 0 from those diagonals. After truncating column 0, table A274391 begins: 1, 1, 1, 1, 1, 1, 1, ...; 1, 3, 16, 125, 1296, 16807, 262144, ...; 1, 5, 43, 525, 8321, 162463, 3774513, ...; 1, 7, 82, 1345, 28396, 734149, 22485898, ...; 1, 9, 133, 2729, 71721, 2300485, 87194689, ...; 1, 11, 196, 4821, 151376, 5787931, 261066156, ...; 1, 13, 271, 7765, 283321, 12567187, 656778529, ...; 1, 15, 358, 11705, 486396, 24539593, 1457297878, ...; ... for which the e.g.f. of row n equals exp(T^n(x)) - 1, where T^n(x) denotes the n-th iteration of Euler's tree function (A000169). For example: D * [1, 3/2!, 43/3!, 1345/4!, 71721/5!, 5787931/6!, ...] = [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...]; D * [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...] = [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...]; D * [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...] = [1, 9/2!, 196/3!, 7765/4!, 486396/5!, 44223529/6!, ...]; ... The matrix inverse of triangle D, as shown with elements [D^-1][n,k] * (n-k)!, begins: 1; -1, 1; -3, -2, 1; -40, -8, -3, 1; -1155, -140, -15, -4, 1; -57696, -5040, -324, -24, -5, 1; -4417175, -302092, -13923, -616, -35, -6, 1; -479964528, -26990720, -970848, -30720, -1040, -48, -7, 1; -70186001319, -3352727646, -98952435, -2439864, -58995, -1620, -63, -8, 1; -13284014648320, -551688200000, -13810202640, -279099200, -5254000, -102960, -2380, -80, -9, 1; -3158467118697099, -116039984093000, -2522473482375, -43202840076, -666167975, -10157796, -167475, -3344, -99, -10, 1; ... The matrix square of triangle D, as shown with elements [D^2][n,k] * (n-k)!, begins: 1; 2, 1; 18, 4, 1; 377, 52, 6, 1; 14304, 1414, 102, 8, 1; 859977, 65904, 3411, 168, 10, 1; 75306424, 4699274, 188496, 6668, 250, 12, 1; 9061819643, 476161840, 15542811, 426144, 11485, 348, 14, 1; 1435831150784, 65093379838, 1788015528, 39885108, 833280, 18162, 462, 16, 1; 289948340816657, 11551390491440, 273593165397, 5134299808, 87266525, 1474704, 26999, 592, 18, 1; ...
Links
Programs
-
PARI
{T(n, k)=local(F=x, LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k)); M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (n-k)!*(P~*N~^-1)[n+1, k+1]} /* Print this triangle: */ for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Comments