cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A274390 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 9, 0, 1, 6, 30, 64, 0, 1, 8, 63, 332, 625, 0, 1, 10, 108, 948, 4880, 7776, 0, 1, 12, 165, 2056, 18645, 89742, 117649, 0, 1, 14, 234, 3800, 50680, 454158, 1986124, 2097152, 0, 1, 16, 315, 6324, 112625, 1537524, 13221075, 51471800, 43046721, 0, 1, 18, 408, 9772, 219000, 4090980, 55494712, 448434136, 1530489744, 1000000000, 0, 1, 20, 513, 14288, 387205, 9266706, 176238685, 2325685632, 17386204761, 51395228090, 25937424601, 0, 1, 22, 630, 20016, 637520, 18704322, 463975764, 8793850560, 111107380464, 759123121050, 1924687118684, 743008370688, 0, 1, 24, 759, 27100, 993105, 34617288, 1067280319, 26858490392, 499217336145, 5964692819140, 36882981687519, 79553145323940, 23298085122481, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Comments

See table A274391 for the coefficients in exp( T^n(x) ), n>=0, where T^n(x) is the e.g.f. of the n-th row of this table.

Examples

			This table begins:
1,  0,   0,     0,       0,        0,          0,            0, ...;
1,  2,   9,    64,     625,     7776,     117649,      2097152, ...;
1,  4,  30,   332,    4880,    89742,    1986124,     51471800, ...;
1,  6,  63,   948,   18645,   454158,   13221075,    448434136, ...;
1,  8, 108,  2056,   50680,  1537524,   55494712,   2325685632, ...;
1, 10, 165,  3800,  112625,  4090980,  176238685,   8793850560, ...;
1, 12, 234,  6324,  219000,  9266706,  463975764,  26858490392, ...;
1, 14, 315,  9772,  387205, 18704322, 1067280319,  70311813880, ...;
1, 16, 408, 14288,  637520, 34617288, 2217367600, 163802295616, ...;
1, 18, 513, 20016,  993105, 59879304, 4254311817, 348285415872, ...;
1, 20, 630, 27100, 1480000, 98110710, 7656893020, 688058734520, ...;
...
where the e.g.f.s of the rows are iterations of T(x) and begin:
T^0(x) = x;
T^1(x) = T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...;
T^2(x) = T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...;
T^3(x) = T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...;
T^4(x) = T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...;
...
where T^n(x)/exp( T^n(x) ) = T^n( x/exp(x) ) = T^(n-1)(x).
Also we have
T(x) = x*exp( T(x) );
T^2(x) = x*exp( T(x) + T^2(x) );
T^3(x) = x*exp( T(x) + T^2(x) + T^3(x) );
T^4(x) = x*exp( T(x) + T^2(x) + T^3(x) + T^4(x) ); ...
		

Crossrefs

Cf. A274570 (transforms diagonals).
Cf. A274740 (same table, but read differently).

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
    /* Print this table as a square array */
    for(n=0,10,for(k=1,10,print1(T(n,k),", "));print(""))
    /* Print this table as a flattened array */
    for(n=0,12,for(k=1,n,print1(T(n-k,k),", "));)

Formula

Let T^n(x) denote the n-th iteration of Euler's tree function T(x), then the coefficients in T^n(x) form the n-th row of this table, and the functions satisfy:
(1) T^n(x) = x * exp( Sum_{i=1..n} T^i(x) ).
(2) T^n(x) = T^(n-1)(x) * exp( T^n(x) ).
(3) T^n(x) = T^(n+1)( x/exp(x) ).

A185298 Expansion of e.g.f. x*exp(x)*exp(x*exp(x)).

Original entry on oeis.org

0, 1, 4, 18, 92, 520, 3222, 21700, 157544, 1224576, 10133450, 88843084, 821832156, 7992373168, 81458868974, 867700216380, 9636146477648, 111323478770560, 1335253363581330, 16598183219157772, 213488758730421380, 2837046652845555696, 38899888173340835894
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2011

Keywords

Comments

a(n) is the number of ways to designate an element in each block of the set partitions of {1,2,...,n} and then designate a block.
Inverse binomial transform: b(n) = Sum (-1)^(n-k)*C(n,k)*a(k), k=0..n of A052512. - Alexander R. Povolotsky, Oct 01 2011
Number of pointed set partitions of pointed sets k[1...k...n] for any point k. - Gus Wiseman, Sep 27 2015
Exponential series reversal gives A207833 with alternating signs: 1, -4, 30, -332, 4880, ... . - Vladimir Reshetnikov, Aug 04 2019

Examples

			The a(2) = 4 pointed set partitions are 1[1[12]], 1[1[1]2[2]], 2[1[1]2[2]], 2[2[12]].
The a(3) = 18 pointed set partitions are 1[1[123]], 1[1[1]2[23]], 1[1[1]3[23]], 1[1[12]3[3]], 1[1[13]2[2]], 1[1[1]2[2]3[3]], 2[2[123]], 2[1[1]2[23]], 2[1[13]2[2]], 2[2[2]3[13]], 2[2[12]3[3]], 2[1[1]2[2]3[3]], 3[3[123]], 3[1[1]3[23]], 3[1[12]3[3]], 3[2[2]3[13]], 3[2[12]3[3]], 3[1[1]2[2]3[3]].
		

Crossrefs

Programs

  • Mathematica
    nn=30; a=x Exp[x]; Range[0,nn]! CoefficientList[Series[a Exp[a], {x,0,nn}],x]
  • PARI
    x='x+O('x^33); concat([0],Vec(serlaplace(x*exp(x)*exp(x*exp(x))))) \\ Joerg Arndt, Oct 04 2015

Formula

E.g.f.: A(A(x)) where A(x) = x*exp(x).
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-k+1). - Vladimir Kruchinin, Sep 23 2011
O.g.f.: Sum_{k>=1} k*x^k/(1 - k*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) ~ exp(r*exp(r) + r - n) * n^(n + 1/2) / (r^(n - 1/2) * sqrt(1 + exp(r)*(1 + 3*r + r^2))), where r = 2*LambertW(exp(1/4)*sqrt(n)/2) - 1/2 + 1/(16*LambertW(exp(1/4)*sqrt(n)/2)^2 + LambertW(exp(1/4)*sqrt(n)/2) - 1). - Vaclav Kotesovec, Mar 21 2023

A227176 E.g.f.: LambertW(LambertW(-x)) / LambertW(-x).

Original entry on oeis.org

1, 1, 5, 43, 525, 8321, 162463, 3774513, 101808185, 3129525793, 108063152091, 4143297446729, 174723134310277, 8039591465487297, 400924930695585143, 21543513647508536161, 1241094846565489688817, 76314967969651411780673, 4989260143610128556354611
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! +...
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! +...
then
(1) A(x) = W(x*W(x)),
(4) A(x) = W(x)^A(x),
(3) A(x) = exp( x*A(x)*W(x) ),
(8) A(x/exp(x)) = W(x).
The e.g.f. also satisfies:
(6) A(x) = 1 + A(x)*x + A(x)*(2 + A(x))*x^2/2! + A(x)*(3 + A(x))^2*x^3/3! + A(x)*(4 + A(x))^3*x^4/4! + A(x)*(5 + A(x))^4*x^5/5! +...
and, for all real m,
(7) A(x)^m = 1 + m*A(x)*(1+m*A(x))^0*x^1/1! + m*A(x)*(2+m*A(x))^1*x^2/2! + m*A(x)*(3+m*A(x))^2*x^3/3! + m*A(x)*(4+m*A(x))^3*x^4/4! + m*A(x)*(5+m*A(x))^4*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[LambertW[LambertW[-x]]/LambertW[-x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 05 2013 *)
  • PARI
    {a(n) = if(n==0,1,sum(k=0,n,binomial(n,k)*k*(k+1)^(k-1)*n^(n-k-1)))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f.: A(x) = W(x*W(x)) */
    {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(subst(W,x,x*W), n)}
    
  • PARI
    /* E.g.f.: A(x) = exp(T(T(x)) ) */
    {a(n)=local(T=sum(k=1,n,k^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(subst(T,x,T)), n)}
    
  • PARI
    /* E.g.f.: A(x) = exp( -A(x)*LambertW(-x) ) */
    {a(n)=local(A=1+x,LambertW=sum(k=1,n,-k^(k-1)*(-x)^k/k!)+x*O(x^n));
    for(i=1,n,A=exp(-A*subst(LambertW,x,-x) +x*O(x^n)));n!*polcoeff(A, n)}
    
  • PARI
    /* E.g.f.: A(x) = ( LambertW(-x)/(-x) )^A(x) */
    {a(n)=local(A=1+x,W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));
    for(i=1,n,A=W^A);n!*polcoeff(A, n)}
    
  • PARI
    /* E.g.f.: A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!. */
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0, n, A*(k+A)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(A, n)}

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * k*(k+1)^(k-1) * n^(n-k-1) for n>0 with a(0)=1.
E.g.f. A(x) satisfies:
(1) A(x) = W(x*W(x)), where W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
(2) A(x) = exp( T(T(x)) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).
(3) A(x) = exp( -A(x)*LambertW(-x) ).
(4) A(x) = ( LambertW(-x)/(-x) )^A(x).
(5) A(x) = ( Sum_{n>=0} (n+1)^(n-1)*x^n/n! )^A(x).
(6) A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!.
(7) A(x)^m = Sum_{n>=0} m*A(x)*(n + m*A(x))^(n-1) * x^n/n!.
(8) A(x/exp(x)) = exp(T(x)) = LambertW(-x)/(-x).
(9) log(A(x)) = A(x) * Sum_{n>=1} n^(n-1) * x^n/n!, and equals the e.g.f. of A207833.
(10) A(x) = 1 + Sum_{n>=1} (n+1)^(n-1)*x^n/n! * Sum_{k>=0} n*(k+n)^(k-1)*x^k/k!.
a(n) ~ n! * (-exp((1+exp(-1))*n)/(sqrt(2*Pi*(1-exp(-1)))*n^(3/2) *LambertW(-exp(-1-exp(-1))))). - Vaclav Kotesovec, Jul 05 2013

A274391 Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 16, 1, 1, 1, 7, 43, 125, 1, 1, 1, 9, 82, 525, 1296, 1, 1, 1, 11, 133, 1345, 8321, 16807, 1, 1, 1, 13, 196, 2729, 28396, 162463, 262144, 1, 1, 1, 15, 271, 4821, 71721, 734149, 3774513, 4782969, 1, 1, 1, 17, 358, 7765, 151376, 2300485, 22485898, 101808185, 100000000, 1, 1, 1, 19, 457, 11705, 283321, 5787931, 87194689, 796769201, 3129525793, 2357947691, 1, 1, 1, 21, 568, 16785, 486396, 12567187, 261066156, 3815719969, 32084546824, 108063152091, 61917364224, 1, 1, 1, 23, 691, 23149, 782321, 24539593, 656778529, 13577077401, 189440927857, 1447917011461, 4143297446729, 1792160394037, 1, 1, 1, 25, 826, 30941, 1195696, 44223529, 1457297878, 39536713209, 800175234736, 10525328121221, 72411962077126, 174723134310277, 56693912375296, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2016

Keywords

Comments

The e.g.f. of each row is an infinite exponential tetration of the e.g.f. of the prior row: W_{n+1}(x) = W_n(x)^W_n(x)^W_n(x)^..., starting with exp(x) as the e.g.f. of row zero. All of these row functions may be expressed in terms of the LambertW(x) function.

Examples

			This table begins:
1, 1,  1,   1,     1,       1,         1,          1,            1, ...;
1, 1,  3,  16,   125,    1296,     16807,     262144,      4782969, ...;
1, 1,  5,  43,   525,    8321,    162463,    3774513,    101808185, ...;
1, 1,  7,  82,  1345,   28396,    734149,   22485898,    796769201, ...;
1, 1,  9, 133,  2729,   71721,   2300485,   87194689,   3815719969, ...;
1, 1, 11, 196,  4821,  151376,   5787931,  261066156,  13577077401, ...;
1, 1, 13, 271,  7765,  283321,  12567187,  656778529,  39536713209, ...;
1, 1, 15, 358, 11705,  486396,  24539593, 1457297878,  99609347825, ...;
1, 1, 17, 457, 16785,  782321,  44223529, 2940281793, 224869459201, ...;
1, 1, 19, 568, 23149, 1195696,  74840815, 5506111864, 465734919289, ...;
1, 1, 21, 691, 30941, 1754001, 120403111, 9709554961, 899836571001, ...;
...
in which the e.g.f. of row n equals W_n(x) = exp( T^n(x) ), where T^n(x) is the n-th iteration of the Euler tree function T(x).
The row functions begin:
W_0(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! +...;
W_1(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + +...+ (n+1)^(n-1)*x^n/n! +...;
W_2(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + +...+ A227176(n)*x^n/n! +...;
W_3(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! +...+ A268653(n)*x^n/n! +...;
W_4(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! +...+ A268654(n)*x^n/n! +...;
W_5(x) = 1 + x + 11*x^2/2! + 196*x^3/3! + 4821*x^4/4! + 151376*x^5/5! + 5787931*x^6/6! +...;
W_6(x) = 1 + x + 13*x^2/2! + 271*x^3/3! + 7765*x^4/4! + 283321*x^5/5! + 12567187*x^6/6! +...;
...
and satisfy:
(0) W_0(x) = exp(x),
(1) W_1(x) = exp(x)^W_1(x) = exp(T(x)) = LambertW(-x)/(-x),
(2) W_2(x) = W_1(x)^W_2(x) = exp(T(T(x))),
(3) W_3(x) = W_2(x)^W_3(x) = exp(T(T(T(x)))),
(4) W_4(x) = W_3(x)^W_4(x) = exp(T(T(T(T(x))))),
...
Euler's tree function T(x), and its iterates begin:
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...
T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...
...
Note that the e.g.f. of the n-th row function, W_n(x), also equals the ratio of two iterates of the Euler tree function: W_n(x) = T^n(x) / T^(n-1)(x).
See A274390 for the table of coefficients in these iterated tree functions.
		

Crossrefs

Cf. A274741 (same table, but read differently).

Programs

  • PARI
    {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
    {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE,n,k)),k)}
    /* Print this table as a square array */
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
    /* Print this table as a flattened array */
    for(n=0,12,for(k=0,n,print1(T(n-k,k),", "));)

Formula

Let W_n(x) denote the e.g.f. of the n-th row function of this table, and T^n(x) the n-th iteration of Euler's tree function T(x) (cf. A274390), then
(1) W_n(x) = exp( T^n(x) ).
(2) W_n(x) = T^n(x) / T^(n-1)(x).
(3) W_n(x) = W_{n+1}( x/exp(x) ).
(4) W_n(x) = W_n( x/exp(x) )^W_n(x).

A227278 E.g.f.: T(T(T(x))), where T(x) = -LambertW(-x) is Euler's tree function (A000169).

Original entry on oeis.org

1, 6, 63, 948, 18645, 454158, 13221075, 448434136, 17386204761, 759123121050, 36882981687519, 1974616464026484, 115536647641839333, 7336947898087080406, 502660682907018997755, 36961205206337621142192, 2903732354672613314658225, 242753209611983811853905330
Offset: 1

Views

Author

Paul D. Hanna, Jul 04 2013

Keywords

Examples

			E.g.f.: A(x) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...
where A(x) = T(T(T(x))).
Related expansions:
A(x/exp(x)) = A(x)/exp(A(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
exp(A(x)) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...+ A268653(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-LambertW[LambertW[LambertW[-x]]], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Jul 05 2013 *)
  • PARI
    /* E.g.f.: A(x) = T(T(T(x))) */
    {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(T,x,subst(T, x, T)), n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* E.g.f.: A(x) = -LambertW(LambertW(LambertW(-x))) */
    {a(n)=local(LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
    n!*polcoeff(-subst(LambertW,x,subst(LambertW,x,subst(LambertW,x,-x))),n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

Given e.g.f. A(x), A(x/exp(x)) = A(x)/exp(A(x)) = T(T(x)) and equals the e.g.f. of A207833.
a(n) ~ n! * exp((1+exp(-1)+exp(-1-exp(-1)))*n)/(sqrt(2*Pi*(1-exp(-1))*(1-exp(-1-exp(-1))))*n^(3/2)). - Vaclav Kotesovec, Jul 05 2013

A290840 a(n) = n! * [x^n] exp(n*x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 12, 117, 1584, 27525, 585108, 14726411, 428551616, 14161828185, 523952280900, 21456869976135, 963553844335536, 47078974421716757, 2486272976536821332, 141118622400977894475, 8566597074999702384384, 553816179165426157329201, 37985975117322654130568964
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2017

Keywords

Crossrefs

Main diagonal of A290824.

Programs

  • Mathematica
    Table[n! * SeriesCoefficient[Exp[n*x]/(1 + LambertW[-x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = A290824(n,n).
a(n) ~ exp(1/2 + n*exp(-1)) * n^n / sqrt(exp(1)-1). - Vaclav Kotesovec, Oct 06 2017
a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*k^k. - Fabian Pereyra, Jul 16 2024
E.g.f.: 1/((1+LambertW(-x))*(1+LambertW(LambertW(-x)))). - Fabian Pereyra, Jul 19 2024

A340473 a(n) = n! [x^n] W(-W(x))/(-W(x)), where W(x) is the Lambert W function.

Original entry on oeis.org

1, 1, 1, 7, 13, 321, 31, 42673, -214983, 12251809, -156239909, 6366130761, -135725103227, 5265915854785, -155145910919817, 6318044844152161, -232403136941014799, 10299509100942804033, -446889500139353805773, 21789892230658085847673, -1078684347590588362463619
Offset: 0

Views

Author

Peter Luschny, Jan 08 2021

Keywords

Comments

Let LW(x) = W(-W(x))/(-W(x)) denote the function in the definition and let T(x) = -W(-x) be Euler's tree function A000169, and L(x) = W(-x)/(-x) the labeled tree function A000272, then LW(x) = L(W(x)), and TW(x) := -T(W(-x)) is A097174, and RW(x) := T(-W(-x)) is A207833.

Crossrefs

Programs

  • Maple
    W := x -> LambertW(x): gf := W(-W(x))/(-W(x)):
    ser := series(gf, x, 24): seq(n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    gf := -ProductLog[-ProductLog[x]]/ProductLog[x];
    Range[0, 20]! CoefficientList[Series[gf, {x, 0, 20}], x]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(lambertw(-lambertw(x))/(-lambertw(x)))) \\ Michel Marcus, Jan 09 2021

A340474 a(n) = n! [x^n] LW(T(x)), where T(x) = -W(-x) Euler's tree function, W(x) is the Lambert W function, and LW(x) = W(-W(x))/(-W(x)) (A340473).

Original entry on oeis.org

1, 1, 3, 22, 209, 2756, 43717, 839686, 18581425, 470707192, 13352676101, 420875581754, 14566375690297, 549877190829604, 22472783629465093, 989043215802778966, 46631075599107558113, 2345376059569552767344, 125350843842721213505029, 7095169059445749303612946
Offset: 0

Views

Author

Peter Luschny, Jan 09 2021

Keywords

Crossrefs

Programs

  • Maple
    W := x -> LambertW(x): T := x -> -W(-x): LW := x -> W(-W(x))/(-W(x)):
    ser := series(LW(T(x)), x, 24): seq(n!*coeff(ser, x, n), n=0..19);
Showing 1-8 of 8 results.