A207833
E.g.f.: T(T(x)), where T(x) is the e.g.f. for labeled rooted trees, A000169.
Original entry on oeis.org
1, 4, 30, 332, 4880, 89742, 1986124, 51471800, 1530489744, 51395228090, 1924687118684, 79553145323940, 3598161485778808, 176797212122233094, 9378715234039802340, 534259395682874552048, 32528761111972930621472, 2108146039402630977388530, 144899759883703796130871468, 10528261771566724089621962780
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...+ A000169(n)*x^n/n! +...
where e.g.f. A(x) = T(T(x)).
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[ 0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[t,{x,0,nn}]],x] (* Geoffrey Critzer, Sep 16 2012 *)
Rest[CoefficientList[Series[-LambertW[LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 24 2014 *)
-
{a(n)=if(n==0||n==1, 1, n^(n-1)-sum(k=1, n-1, (-1)^(n-k)*binomial(n, k)*k^(n-k)*a(k)))} \\ Paul D. Hanna, Nov 21 2012
A274391
Table of coefficients in functions that satisfy W_n(x) = W_{n-1}(x)^W_n(x), with W_0(x) = exp(x), as read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 16, 1, 1, 1, 7, 43, 125, 1, 1, 1, 9, 82, 525, 1296, 1, 1, 1, 11, 133, 1345, 8321, 16807, 1, 1, 1, 13, 196, 2729, 28396, 162463, 262144, 1, 1, 1, 15, 271, 4821, 71721, 734149, 3774513, 4782969, 1, 1, 1, 17, 358, 7765, 151376, 2300485, 22485898, 101808185, 100000000, 1, 1, 1, 19, 457, 11705, 283321, 5787931, 87194689, 796769201, 3129525793, 2357947691, 1, 1, 1, 21, 568, 16785, 486396, 12567187, 261066156, 3815719969, 32084546824, 108063152091, 61917364224, 1, 1, 1, 23, 691, 23149, 782321, 24539593, 656778529, 13577077401, 189440927857, 1447917011461, 4143297446729, 1792160394037, 1, 1, 1, 25, 826, 30941, 1195696, 44223529, 1457297878, 39536713209, 800175234736, 10525328121221, 72411962077126, 174723134310277, 56693912375296, 1
Offset: 0
This table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, ...;
1, 1, 5, 43, 525, 8321, 162463, 3774513, 101808185, ...;
1, 1, 7, 82, 1345, 28396, 734149, 22485898, 796769201, ...;
1, 1, 9, 133, 2729, 71721, 2300485, 87194689, 3815719969, ...;
1, 1, 11, 196, 4821, 151376, 5787931, 261066156, 13577077401, ...;
1, 1, 13, 271, 7765, 283321, 12567187, 656778529, 39536713209, ...;
1, 1, 15, 358, 11705, 486396, 24539593, 1457297878, 99609347825, ...;
1, 1, 17, 457, 16785, 782321, 44223529, 2940281793, 224869459201, ...;
1, 1, 19, 568, 23149, 1195696, 74840815, 5506111864, 465734919289, ...;
1, 1, 21, 691, 30941, 1754001, 120403111, 9709554961, 899836571001, ...;
...
in which the e.g.f. of row n equals W_n(x) = exp( T^n(x) ), where T^n(x) is the n-th iteration of the Euler tree function T(x).
The row functions begin:
W_0(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! +...;
W_1(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + +...+ (n+1)^(n-1)*x^n/n! +...;
W_2(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + +...+ A227176(n)*x^n/n! +...;
W_3(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! +...+ A268653(n)*x^n/n! +...;
W_4(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! +...+ A268654(n)*x^n/n! +...;
W_5(x) = 1 + x + 11*x^2/2! + 196*x^3/3! + 4821*x^4/4! + 151376*x^5/5! + 5787931*x^6/6! +...;
W_6(x) = 1 + x + 13*x^2/2! + 271*x^3/3! + 7765*x^4/4! + 283321*x^5/5! + 12567187*x^6/6! +...;
...
and satisfy:
(0) W_0(x) = exp(x),
(1) W_1(x) = exp(x)^W_1(x) = exp(T(x)) = LambertW(-x)/(-x),
(2) W_2(x) = W_1(x)^W_2(x) = exp(T(T(x))),
(3) W_3(x) = W_2(x)^W_3(x) = exp(T(T(T(x)))),
(4) W_4(x) = W_3(x)^W_4(x) = exp(T(T(T(T(x))))),
...
Euler's tree function T(x), and its iterates begin:
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...
T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...
T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...
...
Note that the e.g.f. of the n-th row function, W_n(x), also equals the ratio of two iterates of the Euler tree function: W_n(x) = T^n(x) / T^(n-1)(x).
See A274390 for the table of coefficients in these iterated tree functions.
Cf.
A274741 (same table, but read differently).
-
{ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
{T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(exp(ITERATE(TREE,n,k)),k)}
/* Print this table as a square array */
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
/* Print this table as a flattened array */
for(n=0,12,for(k=0,n,print1(T(n-k,k),", "));)
A268653
E.g.f.: exp( T(T(T(x))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).
Original entry on oeis.org
1, 1, 7, 82, 1345, 28396, 734149, 22485898, 796769201, 32084546824, 1447917011461, 72411962077126, 3976481464087609, 237939307837951708, 15412492927027232261, 1074675869343994244266, 80270802348342665849569, 6395153963612453962942096, 541390375948749181692141061, 48536543026953818449535683054, 4594206854845500504888845269481, 457878082780635055560866092165156, 47930551834845432770784732668907205
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...
where A(x) = A( x/exp(x) )^A(x).
RELATED SERIES.
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +...
then
(1) A(x) = W( x*W(x) * W(x*W(x)) ),
(2) A(x) = W( x*W(x) )^A(x),
(3) A(x) = exp( A(x) * x*W(x) * W(x*W(x)) ),
(4) A(x/exp(x)) = W(x*W(x)).
Let G(x) = A(x/exp(x)), which begins:
G(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +...
then W(x), G(x), and A(x) are in the family of functions that begin:
(1) W(x) = exp(x)^W(x) = exp(T(x)),
(2) G(x) = W(x)^G(x) = exp(T(T(x))),
(3) A(x) = G(x)^A(x) = exp(T(T(T(x)))), ...
where T(x) = -LambertW(-x) is Euler's tree function:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +...
-
/* E.g.f.: A(x) = exp(T(T(T(x))) ) */
{a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, T))), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* E.g.f.: A(x) = W( x*W(x) * W(x*W(x)) ) */
{a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(W, x, subst(x*W, x, x*W)), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(-x)) ) */
{a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, -x)) +x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* E.g.f.: A(x) = ( LambertW(LambertW(-x))/LambertW(-x) )^A(x) */
{a(n)=local(A=1+x, W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n));
for(i=1, n, A=subst(W,x,x*W)^A); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A268654
E.g.f.: exp( T(T(T(T(x)))) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169).
Original entry on oeis.org
1, 1, 9, 133, 2729, 71721, 2300485, 87194689, 3815719969, 189440927857, 10525328121221, 647265172064985, 43660242639018241, 3205987437435132793, 254635755560090281525, 21755037223870035810001, 1989746853200670755116865, 194000891136578173746676449, 20089033883934411591428091013, 2202022786357483714102765694185
Offset: 0
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 133*x^3/3! + 2729*x^4/4! + 71721*x^5/5! + 2300485*x^6/6! + 87194689*x^7/7! + 3815719969*x^8/8! +...
where A(x) = A( x/exp(x) )^A(x).
RELATED SERIES.
Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + 7^5*x^6/6! + 8^6*x^7/7! + 9^7*x^8/8! +...+ A000272(n+1)*x^n/n! +...
Let F(x) = A(x/exp(x)), which begins:
F(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! + 162463*x^6/6! + 3774513*x^7/7! + 101808185*x^8/8! +...+ A227176(n)*x^n/n! +...
Let G(x) = F(x/exp(x)), which begins:
G(x) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1345*x^4/4! + 28396*x^5/5! + 734149*x^6/6! + 22485898*x^7/7! + 796769201*x^8/8! +...+ A268653(n)*x^n/n! +...
then W(x), F(x), G(x), and A(x) are in the family of functions that begin:
(1) W(x) = exp(x)^W(x) = exp(T(x)),
(2) F(x) = W(x)^F(x) = exp(T(T(x))),
(3) G(x) = F(x)^G(x) = exp(T(T(T(x)))),
(4) A(x) = G(x)^A(x) = exp(T(T(T(T(x))))), ...
where T(x) = -LambertW(-x) is Euler's tree function:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + 6^5*x^6/! + 7^6*x^7/7! + 8^7*x^8/8! +...+ A000169(n)*x^n/n! +...
-
CoefficientList[Series[E^(-ProductLog[ProductLog[ProductLog[ProductLog[-x]]]]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 01 2016 *)
-
/* E.g.f.: A(x) = exp(T(T(T(T(x)))) ) */
{a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, subst(T, x, subst(T, x, T)))), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* E.g.f.: A(x) = exp( -A(x)*LambertW(LambertW(LambertW(-x))) ) */
{a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n));
for(i=1, n, A=exp(-A*subst(LambertW, x, subst(LambertW, x, subst(LambertW, x,-x))) +x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A340473
a(n) = n! [x^n] W(-W(x))/(-W(x)), where W(x) is the Lambert W function.
Original entry on oeis.org
1, 1, 1, 7, 13, 321, 31, 42673, -214983, 12251809, -156239909, 6366130761, -135725103227, 5265915854785, -155145910919817, 6318044844152161, -232403136941014799, 10299509100942804033, -446889500139353805773, 21789892230658085847673, -1078684347590588362463619
Offset: 0
-
W := x -> LambertW(x): gf := W(-W(x))/(-W(x)):
ser := series(gf, x, 24): seq(n!*coeff(ser, x, n), n=0..20);
-
gf := -ProductLog[-ProductLog[x]]/ProductLog[x];
Range[0, 20]! CoefficientList[Series[gf, {x, 0, 20}], x]
-
my(x='x+O('x^25)); Vec(serlaplace(lambertw(-lambertw(x))/(-lambertw(x)))) \\ Michel Marcus, Jan 09 2021
A340474
a(n) = n! [x^n] LW(T(x)), where T(x) = -W(-x) Euler's tree function, W(x) is the Lambert W function, and LW(x) = W(-W(x))/(-W(x)) (A340473).
Original entry on oeis.org
1, 1, 3, 22, 209, 2756, 43717, 839686, 18581425, 470707192, 13352676101, 420875581754, 14566375690297, 549877190829604, 22472783629465093, 989043215802778966, 46631075599107558113, 2345376059569552767344, 125350843842721213505029, 7095169059445749303612946
Offset: 0
-
W := x -> LambertW(x): T := x -> -W(-x): LW := x -> W(-W(x))/(-W(x)):
ser := series(LW(T(x)), x, 24): seq(n!*coeff(ser, x, n), n=0..19);
Showing 1-6 of 6 results.
Comments