cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003946 Expansion of (1+x)/(1-3*x).

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 4.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
a(n) is the number of nonreversing random walks of the length of n edges on a two-dimensional square lattice, all beginning at a fixed point P. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
Binomial transform of {1, 3, 5, 11, 21, 43, ...}, see A001045. Binomial transform is {1, 5, 21, 85, 341, 1365, ...}, see A002450. - Philippe Deléham, Jul 22 2005
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
Equals row sums of triangle A143865. - Gary W. Adamson, Sep 04 2008
Equals INVERT transform of the odd integers = 1/(1 - x - 3x^2 - 5x^3 - ...). - Gary W. Adamson, Jul 27 2009
a(n) is the number of generalized compositions of n+1 when there are 2 *i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Number of length-n strings of 4 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
The sequence is the INVERTi transform of A015448: (1, 5, 21, 89, 377, ...). - Gary W. Adamson, Aug 06 2016
Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s1(m) and s2(m) the sums of the divisors that are congruent to 1 and 2 (mod 3) respectively. For n > 0, the sequence a(n) lists the numbers m such that s1(m) = 5 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the number of quaternary sequences of length n such that no two consecutive terms have distance 2. - David Nacin, May 31 2017
Also the number of maximal cliques in the n-Sierpinski gasket graph. - Eric W. Weisstein, Dec 01 2017
Number of 3-permutations of n elements avoiding the patterns 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Examples

			G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
		

Crossrefs

Cf. A029653, A143865, column 4 in A265583, A015448.

Programs

Formula

a(n) = floor(4*3^(n-1)). - Michael Somos, Jun 18 2002
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 2. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - Raphie Frank, Dec 07 2015
From Mario C. Enriquez, Apr 01 2017: (Start)
(L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3.
(L(a(n+k)) - 1)/3 mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. (End)
E.g.f.: (4*exp(3*x) - 1)/3. - Stefano Spezia, Jan 31 2025

Extensions

Additional comments from Michael Somos, Jun 18 2002
Edited by N. J. A. Sloane, Dec 04 2009

A003947 Expansion of (1+x)/(1-4*x).

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080, 351843720888320
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 5.
For n>=1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
Number of length-n strings of 5 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Create a rectangular prism with edges of lengths 2^(n-2), 2^(n-1), and 2^(n) starting at n=2; then the surface area = a(n). - J. M. Bergot, Aug 08 2013

Crossrefs

Cf. A003948, A003949. Column 5 in A265583.

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 5*4^(n-1) )); # G. C. Greubel, Aug 10 2019
  • Magma
    [1] cat [5*4^(n-1): n in [1..30]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    k := 5; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    q = 5; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 5*4^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    LinearRecurrence[{4},{1,5},30] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    a(n)=5*4^n\4 \\ Charles R Greathouse IV, Sep 08 2011
    
  • Sage
    [1]+[5*4^(n-1) for n in (1..30)] # G. C. Greubel, Aug 10 2019
    

Formula

Binomial transform of A060925. Its binomial transform is A003463 (without leading zero). - Paul Barry, May 19 2003
From Paul Barry, May 19 2003: (Start)
a(n) = (5*4^n - 0^n)/4.
G.f.: (1+x)/(1-4*x).
E.g.f.: (5*exp(4*x) - exp(0))/4. (End)
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 3. - Philippe Deléham, Jul 10 2005
a(n) = A146523(n)*A011782(n). - R. J. Mathar, Jul 08 2009
a(n) = 5*A000302(n-1), n>0.
a(n) = 4*a(n-1), n>1. - Vincenzo Librandi, Dec 31 2010
G.f.: 2+x- 2/G(0), where G(k)= 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A265584 Array T(n,k) counting words with n letters drawn from a k-letter alphabet with no letter appearing thrice in a 3-letter subword.

Original entry on oeis.org

1, 1, 2, 0, 4, 3, 0, 6, 9, 4, 0, 10, 24, 16, 5, 0, 16, 66, 60, 25, 6, 0, 26, 180, 228, 120, 36, 7, 0, 42, 492, 864, 580, 210, 49, 8, 0, 68, 1344, 3276, 2800, 1230, 336, 64, 9, 0, 110, 3672, 12420, 13520, 7200, 2310, 504, 81, 10, 0, 178, 10032, 47088, 65280, 42150, 15876, 3976, 720, 100, 11
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2015

Keywords

Comments

The antidiagonal sums are s(d) = 1, 3, 7, 19, 55, 173, 597, 2245, 9127, 39827, 185411, 916177, 4784217,.. at index d=n+k >=2.

Examples

			1      2      3      4      5       6       7        8
1      4      9     16     25      36      49       64
0      6     24     60    120     210     336      504
0     10     66    228    580    1230    2310     3976
0     16    180    864   2800    7200   15876    31360
0     26    492   3276  13520   42150  109116   247352
0     42   1344  12420  65280  246750  749952  1950984
0     68   3672  47088 315200 1444500 5154408 15388352
T(3,2) =6 counts the 3-letter words aab, aba, abb, bba, bab, baa. The words aaa and bbb are not counted.
		

Crossrefs

Cf. A265583 (no letter twice), A265624. A000290 (row 2), A007531 (row 3), A006355 (column 2), A121907 (column 3), A123620 (column 4), A123871 (column 5), A123887 (column 6).

Programs

  • Maple
    A265584 := proc(n,k)
        (1+x+x^2)/(1-(k-1)*x-(k-1)*x^2) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(seq( A265584(d-k,k),k=1..d-1),d=2..13) ;
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(1+x+x^2)/(1-(k-1)*x-(k-1)*x^2), {x, 0, n}];
    Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 26 2020, from Maple *)

Formula

T(4,k) = k*(k-1)*(k^2+k-1).
T(5,k) = k^2*(k+2)*(k-1)^2.
T(6,k) = k*(k^3+2*k^2-k-1)*(k-1)^2.
T(7,k) = k*(k+1)*(k^2+2*k-1)*(k-1)^3.

A265624 Array T(n,k): The number of words of length n in an alphabet of size k which do not contain 4 consecutive letters.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 0, 8, 9, 4, 0, 14, 27, 16, 5, 0, 26, 78, 64, 25, 6, 0, 48, 228, 252, 125, 36, 7, 0, 88, 666, 996, 620, 216, 49, 8, 0, 162, 1944, 3936, 3080, 1290, 343, 64, 9, 0, 298, 5676, 15552, 15300, 7710, 2394, 512, 81, 10, 0, 548, 16572, 61452
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2015

Keywords

Examples

			  1    2      3      4      5       6       7        8
  1    4      9     16     25      36      49       64
  1    8     27     64    125     216     343      512
  0   14     78    252    620    1290    2394     4088
  0   26    228    996   3080    7710   16716    32648
  0   48    666   3936  15300   46080  116718   260736
  0   88   1944  15552  76000  275400  814968  2082304
  0  162   5676  61452 377520 1645950 5690412 16629816
		

Crossrefs

Cf. A135491 (column k=2), A181137 (k=3), A188714 (k=4), A265583 (not 2 consecutive letters), A265584 (not 3 consecutive letters).

Programs

  • Maple
    A265624 := proc(n,k)
            local x;
            k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)) ;
            coeftayl(%,x=0,n) ;
    end proc;
    seq(seq(A265624(d-k,k),k=1..d-1),d=2..10) ;

Formula

T(2,k) = k^2.
T(3,k) = k^3.
T(4,k) = k*(k+1)*(k^2+3*k+3).
T(5,k) = k*(k+1)*(k^3+4*k^2+6*k+2).
T(6,k) = k*(k+1)^2*(k^3+4*k^2+6*k+1).
G.f. of row k: k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)).

A179928 Row sums of A179927, the triangle of centered orthotopic numbers.

Original entry on oeis.org

1, 3, 6, 13, 32, 89, 276, 943, 3514, 14159, 61242, 282633, 1384684, 7170701, 39105992, 223867419, 1341434134, 8392364851, 54696456734
Offset: 0

Views

Author

Peter Luschny, Aug 02 2010

Keywords

Comments

a(n)-1 is the sum of the antidiagonal of array A265583 from (n+1,1) to (1,n+1). - Mathew Englander, Apr 11 2021

Crossrefs

Programs

  • Maple
    A179928 := proc(n) local j; add(A179927(n,j),j=0..n) end;
  • Mathematica
    e[0, ] = 1; e[n, x_] := e[n, x] = x (1 - x) D[e[n - 1, x], x] + e[n - 1, x] (1 + (n - 1) x) // Expand;
    h[n_, x_] := e[n, x] (1 + x)/(1 - x)^(n + 1);
    T[n_, k_] := SeriesCoefficient[h[n - k, x], {x, 0, k}];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 11 2019 *)

Formula

From Mathew Englander, Apr 11 2021: (Start)
a(n) = 1 + Sum_{i = 1..n} (i+1)*i^(n-i).
a(n) = A026898(n) + A026898(n-1) for n > 0. (End)
Showing 1-6 of 6 results.