A026898
a(n) = Sum_{k=0..n} (n-k+1)^k.
Original entry on oeis.org
1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01: [ . . . . . ]
02: [ . 1 . . . ]
03: [ . 1 . . 1 ]
04: [ . 1 . 1 . ]
05: [ . 1 . 1 1 ]
06: [ . 1 1 . . ]
07: [ . 1 1 . 1 ]
08: [ . 1 1 1 . ]
09: [ . 1 1 1 1 ]
10: [ . 1 2 . . ]
11: [ . 1 2 . 1 ]
12: [ . 1 2 . 2 ]
13: [ . 1 2 1 . ]
14: [ . 1 2 1 1 ]
15: [ . 1 2 1 2 ]
16: [ . 1 2 2 . ]
17: [ . 1 2 2 1 ]
18: [ . 1 2 2 2 ]
19: [ . 1 2 3 . ]
20: [ . 1 2 3 1 ]
21: [ . 1 2 3 2 ]
22: [ . 1 2 3 3 ]
23: [ . 1 2 3 4 ]
(End)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Giulio Cerbai, Pattern-avoiding modified ascent sequences, arXiv:2401.10027 [math.CO], 2024. See p. 12.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See p. 25.
- Sajed Haque, Discriminators of Integer Sequences, 2017, See p. 33 Corollary 29.
- Mathematics Stack Exchange, Asymptotics of ..., 2011.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019. See p. 3.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See p. 4.
-
a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
-- Reinhard Zumkeller, Sep 14 2014
-
[(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
-
a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
-
Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
-
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
for(n=0,30,print1(a(n),", "))
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)} /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
for(n=0, 25, print1(a(n), ", "))
-
[sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
A047970
Antidiagonal sums of nexus numbers (A047969).
Original entry on oeis.org
1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0
a(3) = 1 + 5 + 7 + 1 = 14.
From _Paul D. Hanna_, Jul 22 2014: (Start)
G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ...
where we have the series identity:
A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...)
is equal to
A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ...
and also equals
A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
(End)
From _Joerg Arndt_, Mar 08 2015: (Start)
There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros):
01: [ . . . . ]
02: [ . . . 1 ]
03: [ . . 1 . ]
04: [ . . 1 1 ]
05: [ . 1 . . ]
06: [ . 1 . 1 ]
07: [ . 1 . 2 ]
08: [ . 1 1 . ]
09: [ . 1 1 1 ]
10: [ . 1 1 2 ]
11: [ . 1 2 . ]
12: [ . 1 2 1 ]
13: [ . 1 2 2 ]
14: [ . 1 2 3 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- G. E. Andrews, The Theory of Partitions, 1976, page 242 table of Gaussian polynomials.
- David Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088 [math.CO], 2011.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
- Eric Weisstein's World of Mathematics, Nexus Number
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Antidiagonal sums of
A085388 (beginning with the second antidiagonal) and
A047969.
-
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
A047970 := n -> T(n,0);
seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
-
a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
-
/* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
{a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
-
/* From o.g.f. (Paul D. Hanna, Jul 22 2014) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)}
for(n=0, 25, print1(a(n), ", "))
-
def A074664():
T = []; n = 0
while True:
T.append(1)
yield T[0]
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A074664()
[next(a) for n in range(25)] # Peter Luschny, May 13 2014
A051129
Table T(n,k) = k^n read by upwards antidiagonals (n >= 1, k >= 1).
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 8, 9, 4, 1, 16, 27, 16, 5, 1, 32, 81, 64, 25, 6, 1, 64, 243, 256, 125, 36, 7, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1, 1024, 19683, 65536, 78125, 46656, 16807, 4096, 729, 100, 11
Offset: 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49
1 8 27 64 125 216 343
1 16 81 256 625 1296 2401
1 32 243 1024 3125 7776 16807
1 64 729 4096 15625 46656 117649
1 128 2187 16384 78125 279936 823543
-
a051129 n k = k ^ (n - k)
a051129_row n = a051129_tabl !! (n-1)
a051129_tabl = zipWith (zipWith (^)) a002260_tabl $ map reverse a002260_tabl
-- Reinhard Zumkeller, Sep 14 2014
-
T:= (n, k)-> k^n:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Table[ k^(n-k+1), {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2012 *)
-
b(n) = floor(1/2 + sqrt(2 * n));
vector(100, n, (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1)) \\ Altug Alkan, Dec 09 2015
A287215
Number T(n,k) of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals k; triangle T(n,k), n>=0, 0<=k<=max(n-1,0), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 21, 7, 1, 1, 65, 86, 39, 11, 1, 1, 209, 361, 209, 77, 19, 1, 1, 732, 1584, 1123, 493, 171, 35, 1, 1, 2780, 7315, 6153, 3124, 1293, 413, 67, 1, 1, 11377, 35635, 34723, 20019, 9320, 3709, 1059, 131, 1, 1, 49863, 183080, 202852, 130916, 66992, 30396, 11373, 2837, 259, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
T(4,3) = 1: 123|4.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1;
1, 8, 5, 1;
1, 22, 21, 7, 1;
1, 65, 86, 39, 11, 1;
1, 209, 361, 209, 77, 19, 1;
1, 732, 1584, 1123, 493, 171, 35, 1;
Columns k=0-10 give:
A000012,
A003101(n-1),
A322875,
A322876,
A322877,
A322878,
A322879,
A322880,
A322881,
A322882,
A322883.
-
b:= proc(n, k, m, l) option remember; `if`(n<1, 1,
`if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l))
end:
A:= (n, k)-> b(n-1, min(k, n-1), 1, n):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..max(n-1, 0)), n=0..12);
-
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m*b[n - 1, k, m, l]];
A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, {k, 0, Max[n - 1, 0]}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
A051128
Table T(n,k) = n^k read by upwards antidiagonals (n >= 1, k >= 1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 11, 100, 729, 4096, 16807, 46656, 78125, 65536, 19683, 1024, 1
Offset: 1
Table begins
1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, ...
3, 9, 27, 81, 243, ...
4, 16, 64, 256, 1024, ...
-
A051128 := proc(n) # Boris Putievskiy's formula
a := floor((sqrt(8*n-7)+1)/2);
b := (a+a^2)/2-n;
c := (a-a^2)/2+n;
(b+1)^c end:
seq(A051128(n), n=1..61); # Peter Luschny, Dec 14 2012
# second Maple program:
T:= (n, k)-> n^k:
seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Table[n^(k - n + 1), {k, 1, 11}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Dec 14 2012 *)
-
T(n,k) = n^k \\ Charles R Greathouse IV, Feb 09 2017
A113231
Ascending descending base exponent transform of triangular numbers (A000217).
Original entry on oeis.org
1, 4, 34, 956, 106721, 75818480, 490656737694, 22960404169011552, 7141530219670856270919, 20319415706020976355219258316, 1104797870481014132439711155738991604
Offset: 1
a(1) = 1 because T(1)^T(1) = 1^1 = 1.
a(2) = 4 because T(1)^T(2) + T(2)^T(1) = 1^3 + 3^1 = 4.
a(3) = 34 = 1^6 + 3^3 + 6^1.
a(4) = 956 = 1^10 + 3^6 + 6^3 + 10^1.
a(5) = 106721 = 1^15 + 3^10 + 6^6 + 10^3 + 15^1.
a(6) = 75818480 = 1^21 + 3^15 + 6^10 + 10^6 + 15^3 + 21^1.
a(7) = 490656737694 = 1^28 + 3^21 + 6^15 + 10^10 + 15^6 + 21^3 + 28^1.
a(8) = 22960404169011552 = 1^36 + 3^28 + 6^21 + 10^15 + 15^10 + 21^6 + 28^3 + 36^1.
a(9) = 7141530219670856270919 = 1^45 + 3^36 + 6^28 + 10^21 + 15^15 + 21^10 + 28^6 + 36^3 + 45^1.
-
A000217[n_] := Binomial[n + 1, 2]; Table[Sum[A000217[k]^(A000217[n - k + 1]), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
-
for(n=1,10, print1(sum(k=1,n, (binomial(k+1,2))^(binomial(n-k+2,2))), ", ")) \\ G. C. Greubel, May 18 2017
A113257
Ascending descending base exponent transform of squares (A000290).
Original entry on oeis.org
1, 5, 266, 268722, 4682453347, 2978988815561863, 722638800922610642480852, 22529984108212742763058965679103268, 57286470055793196612331429228839529219232484069
Offset: 1
a(1) = 1 because (1^2)^(1^2) = 1^1 = 1.
a(2) = 5 because (1^2)^(4^1) + (4^1)^(1^4) = 1^4 + 4^1 = 5.
a(3) = 266 = 1^9 + 4^4 + 9^1.
a(4) = 268722 = 1^16 + 4^9 + 9^4 + 16^1.
a(5) = 4682453347 = 1^25 + 4^16 + 9^9 + 16^4 + 25^1.
a(6) = 2978988815561863 = 1^36 + 4^25 + 9^16 + 16^9 + 25^4 + 36^1.
a(7) = 722638800922610642480852 = 1^49 + 4^36 + 9^25 + 16^16 + 25^9 + 36^4 + 49^1.
a(8) = 22529984108212742763058965679103268 = 1^64 + 4^49 + 9^36 + 16^25 + 25^16 + 36^9 + 49^4 + 64^1.
a(9) = 57286470055793196612331429228839529219232484069 = 1^81 + 4^64 + 9^49 + 16^36 + 25^25 + 36^16 + 49^9 + 64^4 + 81^1.
-
Table[Sum[(k^2)^((n - k + 1)^2), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
-
for(n=1,10, print1(sum(k=1,n, (k^2)^((n-k+1)^2) ), ", ")) \\ G. C. Greubel, May 18 2017
A113271
Ascending descending base exponent transform of 2^n.
Original entry on oeis.org
1, 3, 9, 41, 593, 135457, 8606778433, 36893769626691833985, 680564733921105089459460297630318346497, 231584178474632390853419071752762496470716041121409734167406717963826481922561
Offset: 0
a(0) = 1 because (2^0)^(2^0) = 1^1 = 1.
a(1) = 3 = (2^0)^(2^1) + (2^1)^(2^0) = 1^2 + 2^1.
a(2) = 9 = (2^0)^(2^2) + (2^1)^(2^1) + (2^2)^(2^0) = 1^4 + 2^2 + 4^1.
a(3) = 41 = 1^8 + 2^4 + 4^2 + 8^1.
a(4) = 593 = 1^16 + 2^8 + 4^4 + 8^2 + 16^1
a(5) = 135457 = 1^32 + 2^16 + 4^8 + 8^4 + 16^2 + 32^1.
a(6) = 8606778433 = 1^64 + 2^32 + 4^16 + 8^8 + 16^4 + 32^2 + 64^1.
a(7) = 36893769626691833985 = 1^128 + 2^64 + 4^32 + 8^16 + 16^8 + 32^4 + 64^2 + 128^1.
a(8) = 680564733921105089459460297630318346497 = 1^256 + 2^128 + 4^64 + 8^32 + 16^16 + 32^8 + 64^4 + 128^2 + 256^1.
-
Table[Sum[(2^k)^(2^(n - k)), {k, 0, n}], {n, 0, 10}] (* G. C. Greubel, May 19 2017 *)
-
for(n=0,5, print1(sum(k=0,n, (2^k)^(2^(n-k))), ", ")) \\ G. C. Greubel, May 19 2017
A038125
a(n) = Sum_{k=0..n} (k-n)^k.
Original entry on oeis.org
1, 1, 0, 0, 1, -1, 0, 6, -19, 29, 48, -524, 2057, -3901, -9632, 129034, -664363, 1837905, 2388688, -67004696, 478198545, -1994889945, 1669470784, 56929813934, -615188040195, 3794477505573, -12028579019536, -50780206473220
Offset: 0
Jim Ferry (jferry(AT)alum.mit.edu)
0^0 = 1,
1^0 - 0^1 = 1,
2^0 - 1^1 + 0^2 = 0,
3^0 - 2^1 + 1^2 - 0^3 = 0,
...
-
Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ Seiichi Manyama, Dec 02 2021
-
a(n) = sum(k=0, n, (k-n)^k); \\ Michel Marcus, Dec 03 2021
A113258
Ascending descending base exponent transform of factorials.
Original entry on oeis.org
1, 3, 11, 125, 16824569, 1329227995784915877642188398793079569
Offset: 1
a(1) = 1 because (1!)^(1!) = 1^1 = 1.
a(2) = 3 because (1!)^(2!) + (2!)^(1!) = 1 + 2 = 3.
a(3) = 11 = (1!)^(3!) + (2!)^(2!) + (3!)^(1!) = 1^6 + 2^2 + 6^1 = 11.
a(4) = 125 = (1!)^(4!) + (2!)^(3!) + (3!)^(2!) + (4!)^(1!).
a(6) = 1329227995784915877642188398793079569 = 1^720 + 2^120 + 6^24 + 24^6 + 120^2 + 720^1.
a(7) = 1!^7! + 2!^6! + 3!^5! + 4!^4! + 5!^3! + 6!^2! + 7!^1! has 217 digits.
-
Table[Sum[((k)!)^(n - k + 1)!, {k, 1, n}], {n,1,5}] (* G. C. Greubel, May 18 2017 *)
-
for(n=1,5, print1(sum(k=1,n, (k!)^((n-k+1)!)), ", ")) \\ G. C. Greubel, May 18 2017
Showing 1-10 of 31 results.
Comments