cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A026898 a(n) = Sum_{k=0..n} (n-k+1)^k.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0

Views

Author

Keywords

Comments

Row sums of A004248, A009998, A009999.
First differences are in A047970.
First differences of A103439.
Antidiagonal sums of array A003992.
a(n-1), for n>=1, is the number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k)<=1+max(prefix) for k>=1, that are simultaneously projections as maps f: [n] -> [n] where f(x)<=x and f(f(x))=f(x); see example and the two comments (Arndt, Apr 30 2011 Jan 04 2013) in A000110. - Joerg Arndt, Mar 07 2015
Number of finite sequences s of length n+1 whose discriminator sequence is s itself. Here the discriminator sequence of s is the one where the n-th term (n>=1) is the least positive integer k such that the first n terms are pairwise incongruent, modulo k. - Jeffrey Shallit, May 17 2016
From Gus Wiseman, Jan 08 2019: (Start)
Also the number of set partitions of {1,...,n+1} whose minima form an initial interval of positive integers. For example, the a(3) = 9 set partitions are:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,4},{3}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1,3,4},{2}}
{{1,2,3,4}}
Missing from this list are:
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,2},{3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
(End)
a(n) is the number of m-tuples of nonnegative integers less than or equal to n-m (including the "0-tuple"). - Mathew Englander, Apr 11 2021

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01:  [ . . . . . ]
02:  [ . 1 . . . ]
03:  [ . 1 . . 1 ]
04:  [ . 1 . 1 . ]
05:  [ . 1 . 1 1 ]
06:  [ . 1 1 . . ]
07:  [ . 1 1 . 1 ]
08:  [ . 1 1 1 . ]
09:  [ . 1 1 1 1 ]
10:  [ . 1 2 . . ]
11:  [ . 1 2 . 1 ]
12:  [ . 1 2 . 2 ]
13:  [ . 1 2 1 . ]
14:  [ . 1 2 1 1 ]
15:  [ . 1 2 1 2 ]
16:  [ . 1 2 2 . ]
17:  [ . 1 2 2 1 ]
18:  [ . 1 2 2 2 ]
19:  [ . 1 2 3 . ]
20:  [ . 1 2 3 1 ]
21:  [ . 1 2 3 2 ]
22:  [ . 1 2 3 3 ]
23:  [ . 1 2 3 4 ]
(End)
		

Crossrefs

Programs

  • Haskell
    a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
    
  • Maple
    a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
    
  • PARI
    {INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
    {a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)}  /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
    for(n=0, 25, print1(a(n), ", "))
    
  • Sage
    [sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021

Formula

a(n) = A003101(n) + 1.
G.f.: Sum_{n>=0} x^n/(1 - (n+1)*x). - Paul D. Hanna, Sep 13 2011
G.f.: G(0) where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
E.g.f.: Sum_{n>=0} Integral^n exp((n+1)*x) dx^n, where Integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration. - Paul D. Hanna, Dec 28 2013
O.g.f.: Sum_{n>=0} n! * x^n/(1-x)^(n+1) / Product_{k=1..n} (1 + k*x). - Paul D. Hanna, Jul 20 2014
a(n) = A101494(n+1,0). - Vladimir Kruchinin, Apr 01 2015
a(n-1) = Sum_{k = 1..n} k^(n-k). - Gus Wiseman, Jan 08 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + (n+1)/w(n))) * ((n+1)/w(n))^(n+2 - (n+1)/w(n)), where w(n) = LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.

Extensions

a(23)-a(25) from Paul D. Hanna, Dec 28 2013

A349852 Expansion of Sum_{k>=0} k * x^k/(1 + k * x).

Original entry on oeis.org

0, 1, 1, 0, 2, 1, -5, 20, -28, -47, 525, -2056, 3902, 9633, -129033, 664364, -1837904, -2388687, 67004697, -478198544, 1994889946, -1669470783, -56929813933, 615188040196, -3794477505572, 12028579019537, 50780206473221, -1172949397924184, 10766410530764118
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -Sum[(-k)^(n - k + 1), {k, 0, n}]; Array[a, 29, 0] (* Amiram Eldar, Dec 02 2021 *)
  • PARI
    a(n, s=1, t=1) = sum(k=0, n, (-k^t)^(n-k)*k^s);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k*x^k/(1+k*x))))

Formula

a(n) = -Sum_{k=0..n} (-k)^(n-k+1).

A349854 Expansion of Sum_{k>=0} k^3 * x^k/(1 + k * x).

Original entry on oeis.org

0, 1, 7, 12, 14, 49, 13, 8, 596, -1967, 4011, 9764, -128878, 664545, -1837695, -2388448, 67004968, -478198239, 1994890287, -1669470404, -56929813514, 615188040657, -3794477505067, 12028579020088, 50780206473820, -1172949397923535, 10766410530764819, -61183127006113196
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -Sum[(-k)^(n - k + 3), {k, 0, n}]; Array[a, 28, 0] (* Amiram Eldar, Dec 02 2021 *)
  • PARI
    a(n, s=3, t=1) = sum(k=0, n, (-k^t)^(n-k)*k^s);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^3*x^k/(1+k*x))))

Formula

a(n) = -Sum_{k=0..n} (-k)^(n-k+3).

A349855 Expansion of Sum_{k>=0} k^4 * x^k/(1 + k * x).

Original entry on oeis.org

0, 1, 15, 50, 76, 203, 335, -84, 2696, -3011, -8433, 130606, -662348, 1840439, 2391823, -67000872, 478203152, -1994884455, 1669477263, 56929821514, -615188031396, 3794477515715, -12028579007921, -50780206459996, 1172949397939160, -10766410530747243
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-k)^(n - k + 4), {k, 0, n}]; Array[a, 26, 0] (* Amiram Eldar, Dec 02 2021 *)
  • PARI
    a(n, s=4, t=1) = sum(k=0, n, (-k^t)^(n-k)*k^s);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1+k*x))))

Formula

a(n) = Sum_{k=0..n} (-k)^(n-k+4).

A349853 Expansion of Sum_{k>=0} k^2 * x^k/(1 + k * x).

Original entry on oeis.org

0, 1, 3, 2, 4, 11, -13, 36, 56, -515, 2067, -3890, -9620, 129047, -664349, 1837920, 2388704, -67004679, 478198563, -1994889926, 1669470804, 56929813955, -615188040173, 3794477505596, -12028579019512, -50780206473195, 1172949397924211, -10766410530764090
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-k)^(n - k + 2), {k, 0, n}]; Array[a, 28, 0] (* Amiram Eldar, Dec 02 2021 *)
  • PARI
    a(n, s=2, t=1) = sum(k=0, n, (-k^t)^(n-k)*k^s);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^2*x^k/(1+k*x))))

Formula

a(n) = Sum_{k=0..n} (-k)^(n-k+2).

A351279 a(n) = Sum_{k=0..n} 2^k * k^(n-k).

Original entry on oeis.org

1, 2, 6, 18, 58, 202, 762, 3114, 13754, 65386, 332922, 1806506, 10398266, 63226858, 404640250, 2716838186, 19083233210, 139874994282, 1067462826874, 8464760754602, 69620304280890, 592925117961450, 5220996124450042, 47467755352580650, 445027186867923642
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[2^k * k^(n-k), {k, 1, n}]; Array[a, 25, 0] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)))

Formula

G.f.: Sum_{k>=0} (2*x)^k/(1 - k*x).
a(n) ~ sqrt(2*Pi/(1 + LambertW(exp(1)*n/2))) * n^(n + 1/2) * exp(n/LambertW(exp(1)*n/2) - n) / LambertW(exp(1)*n/2)^(n + 1/2). - Vaclav Kotesovec, Feb 06 2022

A354437 a(n) = n! * Sum_{k=0..n} (-k)^(n-k)/k!.

Original entry on oeis.org

1, 1, -1, 1, 13, -199, 2251, -19991, 7001, 7530193, -330734249, 11005284401, -300961551131, 4886902605001, 184195977487523, -28517140157423399, 2322376314679777201, -153646291657993064671, 8388000381774954552751, -287686436757241322569247
Offset: 0

Views

Author

Seiichi Manyama, May 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[ (-k)^(n - k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, (-k)^(n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1+k*x)))))
    
  • Python
    from math import factorial
    def A354437(n): return sum(factorial(n)*(-k)**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 + k*x)).
Showing 1-7 of 7 results.