cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351282 a(n) = Sum_{k=0..n} 3^k * k^(n-k).

Original entry on oeis.org

1, 3, 12, 48, 201, 885, 4116, 20298, 106365, 592455, 3503532, 21946620, 145210305, 1011726417, 7400390052, 56668826118, 453116188821, 3774297532467, 32682069679548, 293632972911048, 2732593851548985, 26299137526992525, 261387306941467188, 2679392140776188706
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[3^k*k^(n-k), {k, 0, n}], {n, 1, 25}]]
  • PARI
    a(n) = sum(k=0, n, 3^k*k^(n-k)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) ~ sqrt(2*Pi/(1 + LambertW(exp(1)*n/3))) * n^(n + 1/2) * exp(n/LambertW(exp(1)*n/3) - n) / LambertW(exp(1)*n/3)^(n + 1/2).
G.f.: Sum_{k>=0} 3^k * x^k / (1 - k*x). - Ilya Gutkovskiy, Feb 06 2022

A351339 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is Sum_{j=0..n} k^j * j^(n-j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 18, 9, 0, 1, 5, 20, 48, 58, 23, 0, 1, 6, 30, 100, 201, 202, 66, 0, 1, 7, 42, 180, 516, 885, 762, 210, 0, 1, 8, 56, 294, 1105, 2756, 4116, 3114, 733, 0, 1, 9, 72, 448, 2094, 6955, 15300, 20298, 13754, 2781, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,      1, ...
  0,  1,   2,    3,     4,     5,      6, ...
  0,  2,   6,   12,    20,    30,     42, ...
  0,  4,  18,   48,   100,   180,    294, ...
  0,  9,  58,  201,   516,  1105,   2094, ...
  0, 23, 202,  885,  2756,  6955,  15198, ...
  0, 66, 762, 4116, 15300, 45030, 112686, ...
		

Crossrefs

Columns k=0..3 give A000007, A026898(n-1), A351279, A351282.
Main diagonal gives A351340.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, 0] = 0; T[n_, k_] := Sum[k^j * j^(n - j), {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 08 2022 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*j^(n-j));

Formula

G.f. of column k: Sum_{j>=0} (k*x)^j/(1 - j*x).
Showing 1-2 of 2 results.