A112532 First differences of [0, A047970].
1, 1, 3, 9, 29, 101, 379, 1525, 6549, 29889, 144419, 736241, 3947725, 22201549, 130624587, 802180701, 5131183301, 34121977865, 235486915507, 1683925343929, 12458499203901, 95237603403381, 751291094637083, 6108883628141189, 51144808472958709, 440444879385258001
Offset: 0
Keywords
Examples
The 9 sequences for n=4 (sorted by maximum) 1121,1122,2211,2212, 1113,2223,3331,3332, 4444 The 29 sequences for n=5 (sorted by maximum) 11211,11212,11221,11222, 22111,22112,22121,22122, 11123,11131,11132,11133, 22213,22231,22232,22233, 33311,33312,33313,33321,33322,33323, 11114, 22224, 33334, 44441,44442,44443, 55555
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
a[n_]:= If[n==0, 1, n + Sum[(i-1)^2*i^(n-i), {i,0,n}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
-
PARI
a(n) = n + sum(i = 0, n, (n-i-1)^2 * (n-i)^i); \\ Michel Marcus, Mar 01 2021
-
Sage
[n +sum((j-1)^2*j^(n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 12 2022
Formula
G.f.: (1-x)^2*( Sum_{n >= 0} x^n/(1 - (n+2)*x) ). - Peter Bala, Jul 09 2014
From Mathew Englander, Feb 28 2021: (Start)
a(n) = n + Sum_{i = 0..n} (n-i-1)^2 * (n-i)^i. (End)
Extensions
Corrected by D. S. McNeil, Aug 20 2010
Combinatorial interpretation and examples by Olivier Gérard, Jan 29 2023
Comments