cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A112851 a(n) = (n-1)*n*(n+1)*(n+2)*(2*n+1)/40.

Original entry on oeis.org

0, 0, 3, 21, 81, 231, 546, 1134, 2142, 3762, 6237, 9867, 15015, 22113, 31668, 44268, 60588, 81396, 107559, 140049, 179949, 228459, 286902, 356730, 439530, 537030, 651105, 783783, 937251, 1113861, 1316136, 1546776, 1808664, 2104872, 2438667, 2813517, 3233097
Offset: 0

Views

Author

Alford Arnold, Sep 24 2005

Keywords

Comments

A112851 is the fourth sequence in A112852.
Also the Wiener index of the (n-1)-triangular grid graph (indexed so the 0-triangular grid graph is the singleton). - Eric W. Weisstein, Sep 08 2017

References

  • L. B. W. Jolley, Summation of Series, Dover. N.Y., 1961, eq. (54), page 10.

Crossrefs

Partial sums of sequence A006011.

Programs

  • Magma
    [(n-1)*n*(n+1)*(n+2)*(2*n+1)/40: n in [0..40]]; // Vincenzo Librandi, Feb 06 2014
    
  • Maple
    a:=n->sum(j^4-j^2, j=0..n)/4: seq(a(n), n=0..36); # Zerinvary Lajos, May 08 2008
  • Mathematica
    Table[(n - 1) n (n + 1)(n + 2)(2 n + 1)/40, {n, 0, 30}] (* Josh Locker *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 3, 21, 81, 231}, 40] (* Harvey P. Dale, Oct 28 2014 *)
  • PARI
    for(n=0,50, print1((n-1)*n*(n+1)*(n+2)*(2*n+1)/40, ", ")) \\ G. C. Greubel, Jul 23 2017
    
  • PARI
    concat(vector(2), Vec(3*x^2*(1 + x) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Sep 08 2017

Formula

4*a(n+1) = 1*2^2*3 + 2*3^2*4 + 3*4^2*5 + ... (n terms). [Jolley]
a(n) = Sum_{i=0..n} A000217(i-1)*A000217(i), where A000217(-1)=0. - Bruno Berselli, Feb 05 2014
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Harvey P. Dale, Oct 28 2014
G.f.: 3*x^2*(1 + x) / (1 - x)^6. - Colin Barker, Sep 08 2017
a(n) = (1/2) * Sum_{k=0..n} C(k^2,2). - Wesley Ivan Hurt, Sep 23 2017
a(n) = Sum_{i=0..n} A000217(i)*A033428(n-i). - Bruno Berselli, Mar 06 2018
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 40*(16*log(2) - 11)/9.
Sum_{n>=2} (-1)^n/a(n) = 20*(8*Pi - 25)/9. (End)

Extensions

More terms from Josh Locker (jlocker(AT)mail.rochester.edu) and Michael W. Motily (mwm5036(AT)psu.edu), Oct 04 2005
Showing 1-1 of 1 results.