cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247363 Central terms of triangle A247358.

Original entry on oeis.org

1, 3, 16, 64, 343, 4096, 59049, 1000000, 14348907, 129140163, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1152921504606846976, 18446744073709551616, 295147905179352825856, 12116574790945106558976
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2014

Keywords

Comments

For all n there exist b(n) and e(n) such that: a(n)=b(n)^e(n) and b(n)+e(n)=2*n, see example.

Examples

			.   n |        a(n) | b(n)^e(n) | b(n)+e(n)
. ----+-------------+-----------+----------
.   1 |           1 |    1^1    |     2
.   2 |           3 |    3^1    |     4
.   3 |          16 |    2^4    |     6
.   4 |          64 |    2^6    |     8
.   5 |         343 |    7^3    |    10
.   6 |        4096 |    8^4    |    12
.   7 |       59049 |    9^5    |    14
.   8 |     1000000 |   10^6    |    16
.   9 |    14348907 |    3^15   |    18
.  10 |   129140163 |    3^17   |    20
.  11 |  1475789056 |   14^8    |    22
.  12 | 38443359375 |   15^9    |    24
		

Crossrefs

Programs

  • Haskell
    a247363 n = a247358 (2 * n - 1) n
    
  • PARI
    row(n) = vecsort(vector(n, k, k^(n-k+1))); \\ A247358
    a(n) = row(2*n-1)[n]; \\ Michel Marcus, Jan 24 2022
  • Python
    def A247363(n):
        return(sorted((b+1)**((2*n-1)-b) for b in range(2*n-1))[n-1])
    # Chai Wah Wu, Sep 14 2014
    

Formula

a(n) = A247358(2*n-1,n).

A003101 a(n) = Sum_{k = 1..n} (n - k + 1)^k.

Original entry on oeis.org

0, 1, 3, 8, 22, 65, 209, 732, 2780, 11377, 49863, 232768, 1151914, 6018785, 33087205, 190780212, 1150653920, 7241710929, 47454745803, 323154696184, 2282779990494, 16700904488705, 126356632390297, 987303454928972, 7957133905608836, 66071772829247409
Offset: 0

Views

Author

Keywords

Comments

For n > 0: a(n) = sum of row n of triangles A051129 and A247358. - Reinhard Zumkeller, Sep 14 2014
a(n-1) is the number of set partitions of [n] into two or more blocks such that all absolute differences between least elements of consecutive blocks are 1. a(3) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, May 22 2017
Min_{n >= 1} a(n+1)/a(n) = 8/3. This is the answer to the 4th problem proposed during the first day of the final round of the 16th Austrian Mathematical Olympiad in 1985 (see link IMO Compendium). - Bernard Schott, Jan 07 2019
If n rings of different internal diameter can fit close together on a tapering column, a(n) is the number of different arrangements of at least one ring. For example, if the rings increasing in size are 1, 2 and 3, then a(3) = 8 corresponding to the possible arrangements from the point on the column of smallest diameter (1XX), (X2X), (XX3), (12X), (32X), (1X3), (X23) and (123), where X denotes a space on the column. - Ian Duff, Jun 23 2025

Examples

			For n = 3 we get a(3) = 3^1 + 2^2 + 1^3 = 8. For n = 4 we get a(4) = 4^1 + 3^2 + 2^3 + 1^4 = 22.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A047970.

Programs

  • Haskell
    a003101 n = sum $ zipWith (^) [0 ..] [n + 1, n .. 1]
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [n eq 0 select 0 else (&+[(n-j+1)^j: j in [1..n]]): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Maple
    A003101 := n->add((n-k+1)^k, k=1..n);
    a:= n-> add((n-j+1)^j, j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 07 2008
  • Mathematica
    Table[Sum[(n-k+1)^k,{k,n}],{n,0,25}] (* Harvey P. Dale, Aug 14 2011 *)
  • PARI
    a(n)=sum(k=1,n,(n-k+1)^k) \\ Charles R Greathouse IV, Oct 31 2011
    
  • SageMath
    def A003101(n): return sum( (n-k+1)^k for k in range(1,n+1))
    [A003101(n) for n in range(50)] # G. C. Greubel, Oct 26 2022

Formula

a(n) = A026898(n) - 1.
G.f.: G(0)/x-1/(1-x)/x where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: Sum_{k>=1} x^k/(1 - (k + 1)*x). - Ilya Gutkovskiy, Oct 09 2018
a(n) = n^1 + (n-1)^2 + (n-2)^3 + ... + 3^(n-2) + 2^(n-1) + 1^n. - Bernard Schott, Jan 07 2019
log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - Vaclav Kotesovec, Jun 15 2021
a(n) ~ sqrt(2*Pi/(n+1 + w(n))) * w(n)^(n+2 - w(n)), where w(n) = (n+1)/LambertW(exp(1)*(n+1)). - Vaclav Kotesovec, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.

A051129 Table T(n,k) = k^n read by upwards antidiagonals (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 8, 9, 4, 1, 16, 27, 16, 5, 1, 32, 81, 64, 25, 6, 1, 64, 243, 256, 125, 36, 7, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1, 1024, 19683, 65536, 78125, 46656, 16807, 4096, 729, 100, 11
Offset: 1

Views

Author

Keywords

Comments

(n-th term) = (n-th term of A002260)^(n-th term of A004736). Both A002260 and A004736 are related to A002024. - Robert A. Stump (bee_ess107(AT)yahoo.com), Aug 29 2002

Examples

			  1   2       3       4       5       6       7
  1   4       9      16      25      36      49
  1   8      27      64     125     216     343
  1  16      81     256     625    1296    2401
  1  32     243    1024    3125    7776   16807
  1  64     729    4096   15625   46656  117649
  1 128    2187   16384   78125  279936  823543
		

Crossrefs

Cf. A051128 (transposed), A003992 (transposed), A004248.
Cf. A002260, A003101 (antidiagonal sums), A000169 (central terms), A003320 (row maxima), A247358 (sorted rows).

Programs

  • Haskell
    a051129 n k = k ^ (n - k)
    a051129_row n = a051129_tabl !! (n-1)
    a051129_tabl = zipWith (zipWith (^)) a002260_tabl $ map reverse a002260_tabl
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Maple
    T:= (n, k)-> k^n:
    seq(seq(T(1+d-k, k), k=1..d), d=1..11);  # Alois P. Heinz, Apr 18 2020
  • Mathematica
    Table[ k^(n-k+1), {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2012 *)
  • PARI
    b(n) = floor(1/2 + sqrt(2 * n));
    vector(100, n, (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1)) \\ Altug Alkan, Dec 09 2015

Formula

a(n) = (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1), where b(n) = [ 1/2 + sqrt(2 * n) ]. (b(n) is the n-th term of A002024.) - Robert A. Stump (bee_ess107(AT)yahoo.com), Aug 29 2002

Extensions

More terms from James Sellers, Dec 11 1999

A003320 a(n) = max_{k=0..n} k^(n-k).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 27, 81, 256, 1024, 4096, 16384, 78125, 390625, 1953125, 10077696, 60466176, 362797056, 2176782336, 13841287201, 96889010407, 678223072849, 4747561509943, 35184372088832, 281474976710656, 2251799813685248
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n+1) = largest term of row n in triangles A051129 and A247358. - Reinhard Zumkeller, Sep 14 2014

Examples

			a(5) = max(5^0, 4^1, 3^2, 2^3, 1^4, 0^5) = max(1,4,9,8,1,0) = 9.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 231.

Crossrefs

Programs

  • Haskell
    a003320 n = maximum $ zipWith (^) [0 .. n] [n, n-1 ..]
    -- Reinhard Zumkeller, Jun 24 2013
    
  • Mathematica
    Join[{1},Max[#]&/@Table[k^(n-k),{n,25},{k,n}]] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n) = vecmax(vector(n+1, k, (k-1)^(n-k+1))); \\ Michel Marcus, Jun 13 2017

Formula

a(n) = A056155(n-1)^(n - A056155(n-1)), for n >= 2. - Ridouane Oudra, Dec 09 2020

Extensions

Easdown reference from Michail Kats (KatsMM(AT)info.sgu.ru)
More terms from James Sellers, Aug 21 2000
Showing 1-4 of 4 results.