A004248
Array read by ascending antidiagonals: A(n, k) = k^n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 27, 16, 5, 1, 0, 1, 32, 81, 64, 25, 6, 1, 0, 1, 64, 243, 256, 125, 36, 7, 1, 0, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 0, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 0, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0
Seen as an array that is read by ascending antidiagonals:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 1, 4, 9, 16, 25, 36, 49, 64, ...
[3] 0, 1, 8, 27, 64, 125, 216, 343, 512, ...
[4] 0, 1, 16, 81, 256, 625, 1296, 2401, 4096, ...
[5] 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, ...
[6] 0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, ...
[7] 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, ...
-
T[x_, y_] := If[y == 0, 1, (x - y)^y];
Table[T[x, y], {x, 0, 11}, {y, x, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2017 *)
-
T(x, y) = x^y \\ Charles R Greathouse IV, Feb 07 2017
-
def Arow(n, len): return [k**n for k in range(len)]
for n in range(8): print([n], Arow(n, 9)) # Peter Luschny, Apr 16 2024
A352981
a(n) = Sum_{k=0..floor(n/2)} k^n.
Original entry on oeis.org
1, 0, 1, 1, 17, 33, 794, 2316, 72354, 282340, 10874275, 53201625, 2438235715, 14350108521, 762963987380, 5249352196144, 317685943157892, 2502137235710736, 169842891165484965, 1506994510201252425, 113394131858832552133, 1119223325228757961465
Offset: 0
-
[(&+[k^n: k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Nov 01 2022
-
a[0] = 1; a[n_] := Sum[k^n, {k, 0, Floor[n/2]}]; Array[a, 22, 0] (* Amiram Eldar, Apr 13 2022 *)
-
a(n) = sum(k=0, n\2, k^n);
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(2*k)/(1-k*x)))
-
[sum( k^n for k in range((n//2)+1)) for n in range(41)] # G. C. Greubel, Nov 01 2022
A352944
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 16, 31, 61, 125, 266, 579, 1305, 3009, 7120, 17255, 42697, 108005, 278466, 731883, 1958589, 5331625, 14758720, 41501135, 118507301, 343405709, 1009313322, 3007557523, 9081204849, 27775308049, 86014412384, 269603741111, 855012176081
Offset: 0
-
Join[{1},Table[Sum[(n-2k)^k,{k,0,Floor[n/2]}],{n,40}]] (* Harvey P. Dale, Dec 12 2022 *)
-
a(n) = sum(k=0, n\2, (n-2*k)^k);
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)))
A345747
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.
Original entry on oeis.org
1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
-
a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))
A352945
a(n) = Sum_{k=0..floor(n/3)} k^(n-3*k).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 3, 5, 10, 20, 42, 93, 214, 516, 1307, 3473, 9659, 28002, 84257, 262229, 842196, 2787864, 9506796, 33388393, 120727844, 449148808, 1717595949, 6743420017, 27147152525, 111931584098, 472225684599, 2037019695797, 8979468552886, 40432306870108
Offset: 0
-
a(n) = sum(k=0, n\3, k^(n-3*k));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/(1-k*x)))
A353288
a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * Stirling2(n-k,k).
Original entry on oeis.org
1, 0, 1, 1, 2, 7, 30, 139, 723, 4487, 33551, 289854, 2774999, 29016343, 333139222, 4232908176, 59442337179, 912948755487, 15154215501815, 269933506466203, 5150440487875190, 105326085645729766, 2307425141636199329, 53998118146846356916, 1343998910355295080556
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-k*j*x)))
-
a(n) = sum(k=0, n\2, k^(n-2*k)*stirling(n-k, k, 2));
A352985
a(n) = Sum_{k=0..floor(n/2)} k^(2*(n-2*k)).
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 18, 74, 339, 1770, 10915, 79555, 663140, 6109351, 61264436, 669862580, 8044351557, 106331744724, 1536980041573, 24028469781765, 402558463751974, 7195932984364585, 137204787854813174, 2792969599543659326, 60668198155262809815
Offset: 0
-
a[0] = 1; a[n_] := Sum[k^(2*(n - 2*k)), {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 13 2022 *)
-
a(n) = sum(k=0, n\2, k^(2*(n-2*k)));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k^2*x)))
Showing 1-7 of 7 results.
Comments