cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A004248 Array read by ascending antidiagonals: A(n, k) = k^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 27, 16, 5, 1, 0, 1, 32, 81, 64, 25, 6, 1, 0, 1, 64, 243, 256, 125, 36, 7, 1, 0, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 0, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 0, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Keywords

Comments

This array transforms into A371761 using the Akiyama-Tanigawa algorithm for powers applied to the rows. - Peter Luschny, Apr 16 2024
This array transforms into A344499 using the Akiyama-Tanigawa algorithm for powers applied to the columns. - Peter Luschny, Apr 27 2024

Examples

			Seen as an array that is read by ascending antidiagonals:
[0] 1, 1,   1,    1,     1,     1,      1,      1,       1, ...
[1] 0, 1,   2,    3,     4,     5,      6,      7,       8, ...
[2] 0, 1,   4,    9,    16,    25,     36,     49,      64, ...
[3] 0, 1,   8,   27,    64,   125,    216,    343,     512, ...
[4] 0, 1,  16,   81,   256,   625,   1296,   2401,    4096, ...
[5] 0, 1,  32,  243,  1024,  3125,   7776,  16807,   32768, ...
[6] 0, 1,  64,  729,  4096, 15625,  46656, 117649,  262144, ...
[7] 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, ...
		

Crossrefs

For other versions see A051129 and A009998.
Row sums are A026898, diagonal sums are A104872. [Paul Barry, Mar 28 2005]

Programs

  • Mathematica
    T[x_, y_] := If[y == 0, 1, (x - y)^y];
    Table[T[x, y], {x, 0, 11}, {y, x, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2017 *)
  • PARI
    T(x, y) = x^y \\ Charles R Greathouse IV, Feb 07 2017
    
  • SageMath
    def Arow(n, len): return [k**n for k in range(len)]
    for n in range(8): print([n], Arow(n, 9))  # Peter Luschny, Apr 16 2024

Formula

Table of x^y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...
As a number triangle, columns have g.f. x^k/(1 - kx). - Paul Barry, Mar 28 2005
From Paul Barry, Jul 13 2005: (Start)
T(n, k) = if(k <= n, k^(n - k), 0).
T(n, k) = Sum_{j=0..floor((n-k)/2)} (-1)^j*C(n-k, j)*C(n-k-j, n-k)*k^(n-k-2j).
(End)

Extensions

New name by Peter Luschny, Apr 16 2024.

A352981 a(n) = Sum_{k=0..floor(n/2)} k^n.

Original entry on oeis.org

1, 0, 1, 1, 17, 33, 794, 2316, 72354, 282340, 10874275, 53201625, 2438235715, 14350108521, 762963987380, 5249352196144, 317685943157892, 2502137235710736, 169842891165484965, 1506994510201252425, 113394131858832552133, 1119223325228757961465
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2022

Keywords

Crossrefs

Programs

  • Magma
    [(&+[k^n: k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    a[0] = 1; a[n_] := Sum[k^n, {k, 0, Floor[n/2]}]; Array[a, 22, 0] (* Amiram Eldar, Apr 13 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, k^n);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(2*k)/(1-k*x)))
    
  • SageMath
    [sum( k^n for k in range((n//2)+1)) for n in range(41)] # G. C. Greubel, Nov 01 2022

Formula

G.f.: Sum_{k>=0} (k * x)^(2 * k) / (1 - k * x).
a(n) ~ exp((3 + (-1)^n)/2) * (n/2)^n / (exp(2) - 1). - Vaclav Kotesovec, Apr 14 2022

A352944 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 31, 61, 125, 266, 579, 1305, 3009, 7120, 17255, 42697, 108005, 278466, 731883, 1958589, 5331625, 14758720, 41501135, 118507301, 343405709, 1009313322, 3007557523, 9081204849, 27775308049, 86014412384, 269603741111, 855012176081
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[(n-2k)^k,{k,0,Floor[n/2]}],{n,40}]] (* Harvey P. Dale, Dec 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - k * x^2).
a(n) ~ sqrt(Pi) * (n/LambertW(exp(1)*n))^((n + 1 - n/LambertW(exp(1)*n))/2) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Apr 14 2022

A345747 a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))

Formula

E.g.f.: Sum_{k>=0} x^(2*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(2*Pi) * exp((n - 1/2)/LambertW(exp(2/3)*(2*n - 1)/6) - 2*n) * n^(2*n + 1/2) / (3^(n + 1/2) * sqrt(1 + LambertW(exp(2/3)*(2*n - 1)/6)) * LambertW(exp(2/3)*(2*n - 1)/6)^n). - Vaclav Kotesovec, Oct 30 2022

A352945 a(n) = Sum_{k=0..floor(n/3)} k^(n-3*k).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 5, 10, 20, 42, 93, 214, 516, 1307, 3473, 9659, 28002, 84257, 262229, 842196, 2787864, 9506796, 33388393, 120727844, 449148808, 1717595949, 6743420017, 27147152525, 111931584098, 472225684599, 2037019695797, 8979468552886, 40432306870108
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, k^(n-3*k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/(1-k*x)))

Formula

G.f.: Sum_{k>=0} x^(3*k) / (1 - k * x).
a(n) ~ sqrt(2*Pi/3) * (n/(3*LambertW(exp(1)*n/3)))^(n + 1/2 - n/LambertW(exp(1)*n/3)) / sqrt(1 + LambertW(exp(1)*n/3)). - Vaclav Kotesovec, Apr 14 2022

A353288 a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * Stirling2(n-k,k).

Original entry on oeis.org

1, 0, 1, 1, 2, 7, 30, 139, 723, 4487, 33551, 289854, 2774999, 29016343, 333139222, 4232908176, 59442337179, 912948755487, 15154215501815, 269933506466203, 5150440487875190, 105326085645729766, 2307425141636199329, 53998118146846356916, 1343998910355295080556
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/prod(j=1, k, 1-k*j*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^(n-2*k)*stirling(n-k, k, 2));

Formula

G.f.: Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - k * j * x).

A352985 a(n) = Sum_{k=0..floor(n/2)} k^(2*(n-2*k)).

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 18, 74, 339, 1770, 10915, 79555, 663140, 6109351, 61264436, 669862580, 8044351557, 106331744724, 1536980041573, 24028469781765, 402558463751974, 7195932984364585, 137204787854813174, 2792969599543659326, 60668198155262809815
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k^(2*(n - 2*k)), {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 13 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, k^(2*(n-2*k)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k^2*x)))

Formula

G.f.: Sum_{k>=0} x^(2 * k) / (1 - k^2 * x).
a(n) ~ sqrt(Pi/2) * (n/(2*LambertW(exp(1)*n/2)))^(2*n + 1/2 - 2*n/LambertW(exp(1)*n/2)) / sqrt(1 + LambertW(exp(1)*n/2)). - Vaclav Kotesovec, Apr 14 2022
Showing 1-7 of 7 results.