cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010
Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.
T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004
T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004
Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006
T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006
[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).
G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.
(End)
A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008
Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008
For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008
The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009
From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)
The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:
S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is
S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.
(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)
If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011
The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011
Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011
Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014
Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015
The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016
Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017
For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018
Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4       5       6      7     8    9 10 ...
1:  1
2:  1    1
3:  1    4     1
4:  1   11    11      1
5:  1   26    66     26       1
6:  1   57   302    302      57       1
7:  1  120  1191   2416    1191     120      1
8:  1  247  4293  15619   15619    4293    247     1
9:  1  502 14608  88234  156190   88234  14608   502    1
10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
-----------------------------------------------------------------
E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - _Michael Somos_, Mar 17 2011
Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - _Vladimir Shevelev_, Jul 01 2011
Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are
.
.   1o (1+t)         1o t         1o t
.   |                / \          / \
.   |               /   \        /   \
.   2o (1+t)      2o     3o    3o    2o
.   |
.   |
.   3o
.
The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).
  • Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.
  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
  • K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Jun 29 2018
    
  • Haskell
    import Data.List (genericLength)
    a008292 n k = a008292_tabl !! (n-1) !! (k-1)
    a008292_row n = a008292_tabl !! (n-1)
    a008292_tabl = iterate f [1] where
       f xs = zipWith (+)
         (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)
         where ks = [1 .. 1 + genericLength xs]
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n,k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019
  • Maple
    A008292 := proc(n,k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc:
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)
    Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)
    Table[Tally[
       Count[#, x_ /; x > 0] & /@ (Differences /@
          Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {A(n,c)=c^(n+c-1)+sum(i=1,c-1,(-1)^i/i!*(c-i)^(n+c-1)*prod(j=1,i,n+c+1-j))}
    
  • Python
    from sympy import binomial
    def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017
    
  • R
    T <- function(n, k) {
      S <- numeric()
      for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))
      return(sum(S))
    }
    for (n in 1:10){
      for (k in 1:n) print(T(n,k))
    } # Indranil Ghosh, Nov 08 2017
    
  • Sage
    [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
    

Formula

T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.
T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).
Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011
E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011
For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002
From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)
Four characterizations of Eulerian numbers T(i, n):
1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).
2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.
3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.
4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)
O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008
G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010
If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0..2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.
The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.
(End)
With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011
T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011
E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012
From Peter Bala, Mar 12 2013: (Start)
Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).
(End)
E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
From Tom Copeland, Sep 18 2014: (Start)
A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...
B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).
C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).
D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).
E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).
F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)
For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015
Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015
For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015
From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^(m-1) (1, a+b, 2ab, 0, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^m (0, 1, 0, ...)^T. - Tom Copeland, Aug 02 2016
Cumulatively summing a row generates the n starting terms of the n-th differences of the n-th powers. Applying the finite difference method to x^n, these terms correspond to those before constant n! in the lowest difference row. E.g., T(4,k) is summed as 0+1=1, 1+11=12, 12+11=23, 23+1=4!. See A101101, A101104, A101100, A179457. - Andy Nicol, May 25 2024

Extensions

Thanks to Michael Somos for additional comments.
Further comments from Christian G. Bower, May 12 2000

A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1

Views

Author

Keywords

Comments

Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)

Examples

			The initial rows of the triangle are:
  [1] 1
  [2] 1,  1
  [3] 1,  3,   1
  [4] 1,  6,   6,    1
  [5] 1, 10,  20,   10,    1
  [6] 1, 15,  50,   50,   15,    1
  [7] 1, 21, 105,  175,  105,   21,   1
  [8] 1, 28, 196,  490,  490,  196,  28,  1
  [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
  ...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
  A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
  so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
  = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
  First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4,  P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
  • P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).

Crossrefs

Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • GAP
    Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
  • Haskell
    a001263 n k = a001263_tabl !! (n-1) !! (k-1)
    a001263_row n = a001263_tabl !! (n-1)
    a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
       dt us vs = zipWith (-) (zipWith (*) us (tail vs))
                              (zipWith (*) (tail us ++ [0]) (init vs))
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    /* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k;
    a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end:
    # Alternatively, as a (0,0)-based triangle:
    R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
  • Mathematica
    T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
    Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *)
    TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
    Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k == n or k == 1: return 1
        if k <= 0 or k > n: return 0
        return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
    for n in (1..9): print([T(n, k) for k in (1..n)])  # Peter Luschny, Oct 28 2014
    

Formula

a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A008288 Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 25, 9, 1, 1, 11, 41, 63, 41, 11, 1, 1, 13, 61, 129, 129, 61, 13, 1, 1, 15, 85, 231, 321, 231, 85, 15, 1, 1, 17, 113, 377, 681, 681, 377, 113, 17, 1, 1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1, 1, 21, 181, 833, 2241, 3653, 3653
Offset: 0

Views

Author

Keywords

Comments

In the Formula section, some contributors use T(n,k) = D(n-k, k) (for 0 <= k <= n), which is the triangular version of the square array (D(n,k): n,k >= 0). Conversely, D(n,k) = T(n+k,k) for n,k >= 0. - Petros Hadjicostas, Aug 05 2020
Also called the tribonacci triangle [Alladi and Hoggatt (1977)]. - N. J. A. Sloane, Mar 23 2014
D(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), (1,1). - Joerg Arndt, Jul 01 2011 [Corrected by N. J. A. Sloane, May 30 2020]
Or, triangle read by rows of coefficients of polynomials P[n](x) defined by P[0] = 1, P[1] = x+1; for n >= 2, P[n] = (x+1)*P[n-1] + x*P[n-2].
D(n, k) is the number of k-matchings of a comb-like graph with n+k teeth. Example: D(1, 3) = 7 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has seven 3-matchings: four triples of three teeth and the three triples {Aa, Bb, CD}, {Aa, Dd, BC}, {Cc, Dd, AB}. Also D(3, 1)=7, the 1-matchings of the same graph being the seven edges: {AB}, {BC}, {CD}, {Aa}, {Bb}, {Cc}, {Dd}. - Emeric Deutsch, Jul 01 2002
Sum of n-th antidiagonal of the array D is A000129(n+1). - Reinhard Zumkeller, Dec 03 2004 [Edited by Petros Hadjicostas, Aug 05 2020 so that the counting of antidiagonals of D starts at n = 0. That is, the sum of the terms in the n-th row of the triangles T is A000129(n+1).]
The A-sequence for this Riordan type triangle (see one of Paul Barry's comments under Formula) is A112478 and the Z-sequence the trivial: {1, 0, 0, 0, ...}. See the W. Lang link under A006232 for Sheffer a- and z-sequences where also Riordan A- and Z-sequences are explained. This leads to the recurrence for the triangle given below. - Wolfdieter Lang, Jan 21 2008
The triangle or chess sums, see A180662 for their definitions, link the Delannoy numbers with twelve different sequences, see the crossrefs. All sums come in pairs due to the symmetrical nature of this triangle. The knight sums Kn14 and Kn15 have been added. It is remarkable that all knight sums are related to the tribonacci numbers, that is, A000073 and A001590, but none of the others. - Johannes W. Meijer, Sep 22 2010
This sequence, A008288, is jointly generated with A035607 as an array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Row n, for n > 0, of Roger L. Bagula's triangle in the Example section shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the numerator of the n-th convergent of the continued fraction [k, k, k, ...], where k = sqrt(x) + 1/sqrt(x); see A230000. - Clark Kimberling, Nov 13 2013
In an n-dimensional hypercube lattice, D(n,k) gives the number of nodes situated at a Minkowski (Manhattan) distance of k from a given node. In cellular automata theory, the cells at Manhattan distance k are called the von Neumann neighborhood of radius k. For k=1, see A005843. - Dmitry Zaitsev, Dec 10 2015
These numbers appear as the coefficients of series relating spherical and bispherical harmonics, in the solutions of Laplace's equation in 3D. [Majic 2019, Eq. 22] - Matt Majic, Nov 24 2019
From Peter Bala, Feb 19 2020: (Start)
The following remarks assume an offset of 1 in the row and column indices of the triangle.
The sequence of row polynomials T(n,x), beginning with T(1,x) = x, T(2,x) = x + x^2, T(3,x) = x + 3*x^2 + x^3, ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd(T(n,x), T(m,x)) = T(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the sequence (T(n,x): n >= 1) is a divisibility sequence in the polynomial ring Z[x]; that is, if n divides m then T(n,x) divides T(m,x) in Z[x].
Let S(x) = 1 + 2*x + 6*x^2 + 22*x^3 + ... denote the o.g.f. for the large Schröder numbers A006318. The power series (x*S(x))^n, n = 2, 3, 4, ..., can be expressed as a linear combination with polynomial coefficients of S(x) and 1: (x*S(x))^n = T(n-1,-x) - T(n,-x)*S(x). The result can be extended to negative integer n if we define T(0,x) = 0 and T(-n,x) = (-1)^(n+1) * T(n,x)/x^n. Cf. A115139.
[In the previous two paragraphs, D(n,x) was replaced with T(n,x) because the contributor is referring to the rows of the triangle T(n,k), not the rows of the array D(n,k). - Petros Hadjicostas, Aug 05 2020] (End)
Named after the French amateur mathematician Henri-Auguste Delannoy (1833-1915). - Amiram Eldar, Apr 15 2021
D(i,j) = D(j,i). With this and Dmitry Zaitsev's Dec 10 2015 comment, D(i,j) can be considered the number of points at L1 distance <= i in Z^j or the number of points at L1 distance <= j in Z^i from any given point. The rows and columns of D(i,j) are the crystal ball sequences on cubic lattices. See the first example below. The n-th term in the k-th crystal ball sequence can be considered the number of points at distance <= n from any point in a k-dimensional cubic lattice, or the number of points at distance <= k from any point in an n-dimensional cubic lattice. - Shel Kaphan, Jan 01 2023 and Jan 07 2023
Dimensions of hom spaces Hom(R^{(i)}, R^{(j)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023

Examples

			The square array D(i,j) (i >= 0, j >= 0) begins:
  1, 1,  1,   1,   1,   1,    1,    1,    1,    1, ... = A000012
  1, 3,  5,   7,   9,  11,   13,   15,   17,   19, ... = A005408
  1, 5, 13,  25,  41,  61,   85,  113,  145,  181, ... = A001844
  1, 7, 25,  63, 129, 231,  377,  575,  833, 1159, ... = A001845
  1, 9, 41, 129, 321, 681, 1289, 2241, 3649, 5641, ... = A001846
  ...
For D(2,5) = 61, which is seen above in the row labeled A001844, we calculate the sum (9 + 11 + 41) of the 3 nearest terms above and/or to the left. - _Peter Munn_, Jan 01 2023
D(2,5) = 61 can also be obtained from the row labeled A005408 using a recurrence mentioned in the formula section:  D(2,5) = D(1,5) + 2*Sum_{k=0..4} D(1,k), so D(2,5) = 11 + 2*(1+3+5+7+9) = 11 + 2*25. - _Shel Kaphan_, Jan 01 2023
As a triangular array (on its side) this begins:
   0,   0,   0,   0,   1,   0,  11,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   1,   0,   3,   0,  13,   0,  63,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   0,   0,   1,   0,  11,   0, ...
   [Edited by _Shel Kaphan_, Jan 01 2023]
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle T(n,k) (with rows n >= 0 and columns k = 0..n), this begins:
   1;
   1,  1;
   1,  3,   1;
   1,  5,   5,   1;
   1,  7,  13,   7,    1;
   1,  9,  25,  25,    9,    1;
   1, 11,  41,  63,   41,   11,    1;
   1, 13,  61, 129,  129,   61,   13,   1;
   1, 15,  85, 231,  321,  231,   85,  15,   1;
   1, 17, 113, 377,  681,  681,  377, 113,  17,  1;
   1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1;
   ... (End)
Triangle T(n,k) recurrence: 63 = T(6,3) = 25 + 13 + 25 = T(5,2) + T(4,2) + T(5,3).
Triangle T(n,k) recurrence with A-sequence A112478: 63 = T(6,3) = 1*25 + 2*25 - 2*9 + 6*1 (T entries from row n = 5 only). [Here the formula T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j) is used with n = 6 and k = 3; i.e., T(6,3) = Sum_{j=0..3} A111478(j) * T(5, 2+j). - _Petros Hadjicostas_, Aug 05 2020]
From _Philippe Deléham_, Mar 29 2012: (Start)
Subtriangle of the triangle given by (1, 0, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   1,  0;
   1,  1,  0;
   1,  3,  1,  0;
   1,  5,  5,  1,  0;
   1,  7, 13,  7,  1,  0;
   1,  9, 25, 25,  9,  1, 0;
   1, 11, 41, 63, 41, 11, 1, 0;
   ...
Subtriangle of the triangle given by (0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   0, 1;
   0, 1,  1;
   0, 1,  3,  1;
   0, 1,  5,  5,  1;
   0, 1,  7, 13,  7,  1;
   0, 1,  9, 25, 25,  9,  1;
   0, 1, 11, 41, 63, 41, 11, 1;
   ... (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Mathematica, 26 (1963), 223-229.
  • G. Picou, Note #2235, L'Intermédiaire des Mathématiciens, 8 (1901), page 281. - N. J. A. Sloane, Mar 02 2022
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Sums of antidiagonals: A000129 (Pell numbers).
Main diagonal: A001850 (central Delannoy numbers), which has further information and references.
A002002, A026002, and A190666 are +-k-diagonals for k=1, 2, 3 resp. - Shel Kaphan, Jan 01 2023
See also A027618.
Cf. A059446.
Has same main diagonal as A064861. Different from A100936.
Read mod small primes: A211312, A211313, A211314, A211315.
Triangle sums (see the comments): A000129 (Row1); A056594 (Row2); A000073 (Kn11 & Kn21); A089068 (Kn12 & Kn22); A180668 (Kn13 & Kn23); A180669 (Kn14 & Kn24); A180670 (Kn15 & Kn25); A099463 (Kn3 & Kn4); A116404 (Fi1 & Fi2); A006498 (Ca1 & Ca2); A006498(3*n) (Ca3 & Ca4); A079972 (Gi1 & Gi2); A079972(4*n) (Gi3 & Gi4); A079973(3*n) (Ze1 & Ze2); A079973(2*n) (Ze3 & Ze4).
Cf. A102413, A128966. (D(n,1)) = A005843. Cf. A115139.

Programs

  • Haskell
    a008288 n k = a008288_tabl !! n !! k
    a008288_row n = a008288_tabl !! n
    a008288_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Maple
    A008288 := proc(n, k) option remember; if k = 0 then 1 elif n=k then 1 else procname(n-1, k-1) + procname(n-2, k-1) + procname(n-1, k) end if; end proc: seq(seq(A008288(n,k),k=0..n), n=0..10); # triangular indices n and k
    P[0]:=1; P[1]:=x+1; for n from 2 to 12 do P[n]:=expand((x+1)*P[n-1]+x*P[n-2]); lprint(P[n]); lprint(seriestolist(series(P[n],x,200))); end do:
  • Mathematica
    (* Next, A008288 jointly generated with A035607 *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    d[n_, k_] := Binomial[n+k, k]*Hypergeometric2F1[-k, -n, -n-k, -1]; A008288 = Flatten[Table[d[n-k, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Apr 05 2012, after 3rd formula *)
  • Python
    from functools import cache
    @cache
    def delannoy_row(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [1, 1]
        rov = delannoy_row(n - 2)
        row = delannoy_row(n - 1) + [1]
        for k in range(n - 1, 0, -1):
            row[k] += row[k - 1] + rov[k - 1]
        return row
    for n in range(10): print(delannoy_row(n))  # Peter Luschny, Jul 30 2023
  • Sage
    for k in range(8):  # seen as an array, read row by row
        a = lambda n: hypergeometric([-n, -k], [1], 2)
        print([simplify(a(n)) for n in range(11)]) # Peter Luschny, Nov 19 2014
    

Formula

D(n, 0) = 1 = D(0, n) for n >= 0; D(n, k) = D(n, k-1) + D(n-1, k-1) + D(n-1, k).
Bivariate o.g.f.: Sum_{n >= 0, k >= 0} D(n, k)*x^n*y^k = 1/(1 - x - y - x*y).
D(n, k) = Sum_{d = 0..min(n,k)} binomial(k, d)*binomial(n+k-d, k) = Sum_{d=0..min(n,k)} 2^d*binomial(n, d)*binomial(k, d). [Edited by Petros Hadjicostas, Aug 05 2020]
Seen as a triangle read by rows: T(n, 0) = T(n, n) = 1 for n >= 0 and T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), 0 < k < n and n > 1. - Reinhard Zumkeller, Dec 03 2004
Read as a number triangle, this is the Riordan array (1/(1-x), x(1+x)/(1-x)) with T(n, k) = Sum_{j=0..n-k} C(n-k, j) * C(k, j) * 2^j. - Paul Barry, Jul 18 2005
T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k). - Paul Barry, May 21 2006
Let y^k(n) be the number of Khalimsky-continuous functions f from [0,n-1] to Z such that f(0) = 0 and f(n-1) = k. Then y^k(n) = D(i,j) for i = (1/2)*(n-1-k) and j = (1/2)*(n-1+k) where n-1+k belongs to 2Z. - Shiva Samieinia (shiva(AT)math.su.se), Oct 08 2007
Recurrence for triangle from A-sequence (see the Wolfdieter Lang comment above): T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j), n >= 1, k >= 1. [For k > n, the sum is empty, in which case T(n,k) = 0.]
From Peter Bala, Jul 17 2008: (Start)
The n-th row of the square array is the crystal ball sequence for the product lattice A_1 x ... x A_1 (n copies). A035607 is the table of the associated coordination sequences for these lattices.
The polynomial p_n(x) := Sum {k = 0..n} 2^k * C(n,k) * C(x,k) = Sum_{k = 0..n} C(n,k) * C(x+k,n), whose values [p_n(0), p_n(1), p_n(2), ... ] give the n-th row of the square array, is the Ehrhart polynomial of the n-dimensional cross polytope (the hyperoctahedron) [Bump et al. (2000), Theorem 6].
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The reciprocity law p_n(m) = p_m(n) reflects the symmetry of the table.
The polynomial p_n(x) is the unique polynomial solution of the difference equation (x+1)*f(x+1) - x*f(x-1) = (2*n+1)*f(x), normalized so that f(0) = 1.
These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_n(x-1), n = 1,2,3,..., satisfy a Riemann hypothesis [Bump et al. (2000), Theorem 4]. The o.g.f. for the p_n(x) is (1 + t)^x/(1 - t)^(x + 1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ... .
The square array of Delannoy numbers has a close connection with the constant log(2). The entries in the n-th row of the array occur in the series acceleration formula log(2) = (1 - 1/2 + 1/3 - ... + (-1)^(n+1)/n) + (-1)^n * Sum_{k>=1} (-1)^(k+1)/(k*D(n,k-1)*D(n,k)). [T(n,k) was replaced with D(n,k) in the formula to agree with the beginning of the paragraph. - Petros Hadjicostas, Aug 05 2020]
For example, the fourth row of the table (n = 3) gives the series log(2) = 1 - 1/2 + 1/3 - 1/(1*1*7) + 1/(2*7*25) - 1/(3*25*63) + 1/(4*63*129) - ... . See A142979 for further details.
Also the main diagonal entries (the central Delannoy numbers) give the series acceleration formula Sum_{n>=1} 1/(n*D(n-1,n-1)*D(n,n)) = (1/2)*log(2), a result due to Burnside. [T(n,n) was replaced here with D(n,n) to agree with the previous paragraphs. - Petros Hadjicostas, Aug 05 2020]
Similar relations hold between log(2) and the crystal ball sequences of the C_n lattices A142992. For corresponding results for the constants zeta(2) and zeta(3), involving the crystal ball sequences for root lattices of type A_n and A_n x A_n, see A108625 and A143007 respectively. (End)
From Peter Bala, Oct 28 2008: (Start)
Hilbert transform of Pascal's triangle A007318 (see A145905 for the definition of this term).
D(n+a,n) = P_n(a,0;3) for all integer a such that a >= -n, where P_n(a,0;x) is the Jacobi polynomial with parameters (a,0) [Hetyei]. The related formula A(n,k) = P_k(0,n-k;3) defines the table of asymmetric Delannoy numbers, essentially A049600. (End)
Seen as a triangle read by rows: T(n, k) = Hyper2F1([k-n, -k], [1], 2). - Peter Luschny, Aug 02 2014, Oct 13 2024.
From Peter Bala, Jun 25 2015: (Start)
O.g.f. for triangle T(n,k): A(z,t) = 1/(1 - (1 + t)*z - t*z^2) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ....
1 + z*d/dz(A(z,t))/A(z,t) is the o.g.f. for A102413. (End)
E.g.f. for the n-th subdiagonal of T(n,k), n >= 0, equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 4*x + 4*x^2/2) = 1 + 5*x + 13*x^2/2! + 25*x^3/3! + 41*x^4/4! + 61*x^5/5! + .... - Peter Bala, Mar 05 2017 [The n-th subdiagonal of triangle T(n,k) is the n-th row of array D(n,k).]
Let a_i(n) be multiplicative with a_i(p^e) = D(i, e), p prime and e >= 0, then Sum_{n > 0} a_i(n)/n^s = (zeta(s))^(2*i+1)/(zeta(2*s))^i for i >= 0. - Werner Schulte, Feb 14 2018
Seen as a triangle read by rows: T(n,k) = Sum_{i=0..k} binomial(n-i, i) * binomial(n-2*i, k-i) for 0 <= k <= n. - Werner Schulte, Jan 09 2019
Univariate generating function: Sum_{k >= 0} D(n,k)*z^k = (1 + z)^n/(1 - z)^(n+1). [Dziemianczuk (2013), Eq. 5.3] - Matt Majic, Nov 24 2019
(n+1)*D(n+1,k) = (2*k+1)*D(n,k) + n*D(n-1,k). [Majic (2019), Eq. 22] - Matt Majic, Nov 24 2019
For i, j >= 1, D(i,j) = D(i,j-1) + 2*Sum_{k=0..i-1} D(k,j-1), or, because D(i,j) = D(j,i), D(i,j) = D(i-1,j) + 2*Sum_{k=0..j-1} D(i-1,k). - Shel Kaphan, Jan 01 2023
Sum_{k=0..n} T(n,k)^2 = A026933(n). - R. J. Mathar, Nov 07 2023
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. Read as a lower triangular array, the signed n-th row polynomial R(n, -x) = 1/sqrt(1 - 6*x + x^2) *( 1/S(x)^(n+1) + (x*S(x))^(n+1) ). For example, R(4, -x) = 1 - 7*x + 13*x^2 - 7*x^3 + x^4 = 1/sqrt(1 - 6*x + x^2) * ( 1/S(x)^5 + (x*S(x))^5 ). Cf. A102413. - Peter Bala, Aug 01 2024

Extensions

Expanded description from Clark Kimberling, Jun 15 1997
Additional references from Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 28 2001
Changed the notation to make the formulas more precise. - N. J. A. Sloane, Jul 01 2002

A060187 Triangle read by rows: Eulerian numbers of type B, T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (2*n - 2*k + 1)*T(n-1, k-1) + (2*k - 1)*T(n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 23, 23, 1, 1, 76, 230, 76, 1, 1, 237, 1682, 1682, 237, 1, 1, 722, 10543, 23548, 10543, 722, 1, 1, 2179, 60657, 259723, 259723, 60657, 2179, 1, 1, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 1, 1, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Rows are expansions of p(x,n) = 2^n*(1 - x)^(1 + n)*LerchPhi(x, -n, 1/2). Row sums are A000165. - Roger L. Bagula, Sep 16 2008
Eulerian numbers of type B. The n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type B_(n-1). For example, the permutohedron of type B_2 is an octagon whose dual, also an octagon, has f-polynomial f(x) = 1 + 8*x + 8*x^2 and h-polynomial given by (x-1)^2 + 8*(x-1) + 8 = 1 + 6*x + x^2, giving [1,6,1] as row 3 of this table (see Fomin and Reading, p. 21). The corresponding triangle of f-vectors for the type B permutohedra is A145901. The Hilbert transform of the current array is A145905. - Peter Bala, Oct 26 2008
From Peter Bala, Oct 13 2011: (Start)
The row polynomials count the elements of the hyperoctahedral group B_n (the group of signed permutations on n letters) according to the number of type B descents (see Chow and Gessel).
Let P denote Pascal's triangle. Then the first column of the array P*(I-t*P^2)^(-1) (I the identity array) begins [1/(1-t),(1+t)/(1-t)^2,(1+6*t+t^2)/(1-t)^3,...]. The numerator polynomials are the row polynomials of this table. Similarly, in the array (I-t*A062715)^-1, the numerator polynomials in the first column produce the row polynomials of this table (but with an extra factor of t). Cf. A145901. (End)
The Dasse-Hartaut and Hitczenko paper (section 6.1.4) shows this triangle of numbers, when suitably normalized, satisfies the central limit theorem. - Peter Bala, Mar 05 2012
These are the coefficients of the midpoint Eulerian polynomials (see Quade/Collatz and Schoenberg). In terms of the cardinal B-splines b_n(t) these polynomials can be defined as M_n(x) = 2^n*n!*Sum_{k=0..n} b_{n+1}(k+1/2)*x^k. - Peter Luschny, Apr 26 2013
The o.g.f. Godd(n, x) = Sum_{m>=0} Sodd(n, m)*x^m, with Sodd(n, m) = Sum_{j=0..m} (1+2*j)^n is Podd(n, x)/(1 - x)^(n+2) with Podd(n, x) = Sum_{k=0..n} T(n+1, k+1)*x^k. E.g., Godd(2, x) = (1 + 6*x + x^2)/(1 - x)^4; see A000447(n+1) for n >= 0. For the e.g.f.s see A282628. - Wolfdieter Lang, Mar 17 2017
Let h_0(x,y) = x*y/(x+y), and D = x*D_x - y*D_y where D_x is the partial derivative w.r.t. x, etc. Put h_{n+1}(x,y) = D(h_n)(x,y). Then h_n(x,y) = x*y/(x+y)^(n+1)*f_{n}(x,y) where f_n(x,y) = Sum_{k=0..n} (-1)^k*T(n+1,k+1)*y^(n-k)*x^k. If instead of h_0, one similarly uses g_0(x,y) = x*y/(y-x), etc., then one obtains g_n(x,y) = x*y/(y-x)^(n+1)*Sum_{k=0..n} T(n+1,k+1)*y^(n-k)*x^k. (If instead of D one considers D' = x*D_x + y*D_y, then h_0 and g_0 are fixed points of D'.) - Gregory Gerard Wojnar, Oct 28 2018
Counts coloop-free Schubert delta-matroids by cornered rank, see Remark 4.6 of the paper by Eur, Fink, Larson, Spink. - Matt Larson, May 20 2024

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4      5     6    7 8 ...
1:  1
2:  1    1
3:  1    6     1
4:  1   23    23      1
5:  1   76   230     76      1
6:  1  237  1682   1682    237     1
7:  1  722 10543  23548  10543   722    1
8:  1 2179 60657 259723 259723 60657 2179 1
...
row n = 9: 1 6552 331612 2485288 4675014 2485288 331612 6552 1,
row n = 10: 1 19673 1756340 21707972 69413294 69413294 21707972 1756340 19673 1,
row n = 11: 1 59038 9116141 178300904 906923282 1527092468 906923282 178300904 9116141 59038 1, ... reformatted. - _Wolfdieter Lang_, Mar 17 2017
		

References

  • G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 11.
  • W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsbericht der Preuss. Akad. der Wiss., Phys.-Math. Kl, (1938), 383-429.

Crossrefs

Diagonals give A060188, A060189, A060190. Cf. A008292.
Cf. also A000165 (row sums), A002436 (alt. row sums), A008292, A145901, A145905 (Hilbert transform). A062715.

Programs

  • GAP
    a:=Flat(List([1..11],n->List([1..n],k->Sum([1..k],i->(-1)^(k-i)*Binomial(n,k-i)*(2*i-1)^(n-1))))); # Muniru A Asiru, Feb 09 2018
    
  • Magma
    [[(&+[(-1)^(k-j)*Binomial(n,k-j)*(2*j-1)^(n-1): j in [1..k]]): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
    
  • Maple
    A060187:= (n,k) -> add((-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1), i = 1..k):
    for n from 1 to 10 do seq(A060187(n,k),k = 1..n); end do; # Peter Bala, Oct 26 2008
    T:=proc(n,k,l) option remember; if (n=1 or k=1 or k=n) then 1 else
    (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
    for n from 1 to 10 do lprint([seq(T(n,k,2),k=1..n)]); od; # N. J. A. Sloane, May 08 2013
    P := proc(n,x) option remember; if n = 0 then 1 else
      (n*x+(1/2)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
      expand(%) fi end:
    A060187 := (n,k) -> 2^n*coeff(P(n,x),x,k):
    seq(print(seq(A060187(n,k), k=0..n)), n=0..10);  # Peter Luschny, Mar 08 2014
  • Mathematica
    p[x_, n_] = 2^n (1 - x)^(1 + n) LerchPhi[x, -n, 1/2]; Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Sep 16 2008 *)
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[n, k-i]*(2*i-1)^(n-1), {i, 1, k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 23 2015, after Peter Bala *)
  • PARI
    {T(n, k) = if( nMichael Somos, Jan 07 2011 */
    
  • Python
    from math import isqrt, comb
    def A060187(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        b = n-comb(a,2)
        return sum(-comb(a,b-i)*((i<<1)-1)**(a-1) if b-i&1 else comb(a,b-i)*((i<<1)-1)**(a-1) for i in range(1,b+1)) # Chai Wah Wu, Nov 13 2024
  • Sage
    @CachedFunction
    def A060187(n, k) :
        if n == 0: return 1 if k == 0 else 0
        return (2*(n-k)+1)*A060187(n-1, k-1) + (2*k+1)*A060187(n-1, k)
    for n in (0..8): [A060187(n,k) for k in (0..n)] # Peter Luschny, Apr 26 2013
    

Formula

T(s, 2) = 3^(s-1) - s. Sum_{t=1..s} T(s, t) = 2^(s-1)*(s-1)!.
From Peter Bala, Oct 26 2008: (Start)
T(n,k) = Sum_{i = 1..k} (-1)^(k-i)*binomial(n,k-i)*(2*i-1)^(n-1).
E.g.f.: (1 - x)*exp((1 - x)*t)/(1 - x*exp(2*(1 - x)*t)) = 1 + (1 + x)*t + (1 + 6*x + x^2)*t^2/2! + ... .
The row polynomials R(n,x) satisfy R(n,x)/(1 - x)^n = Sum_{i >= 1} (2*i - 1)^(n-1)*x^i. For example, row 3 gives (x + 6*x^2 + x^3)/ (1 - x)^3 = x + 3^2*x^2 + 5 ^2*x^3 + 7^2*x^4 + ... .
The recurrence relation R(n+1,x) = [(2*n+1)*x - 1]*R(n,x) + 2*x*(1 - x)*R'(n,x) shows that the row polynomials R(n,x) have only real zeros (apply Corollary 1.2 of [Liu and Wang]).
Worpitzky-type identity: Sum_{k = 1..n} T(n,k)*binomial(x+k-1,n-1) = (2*x+1)^(n-1).
The nonzero alternating row sums are (-1)^(n-1)*A002436(n). (End)
exp(x)*(d/dx)^n [exp(x)/(1 - exp(2*x))] = R(n+1,exp(2*x))/ (1 - exp(2*x))^(n+1).
Compare with Example 12.3.1. in [Boros and Moll]. - Peter Bala, Nov 07 2008
The n-th row polynomial R(n,x) = Sum_{k = 0..n} A145901(n,k)*x^k*(1 - x)^(n-k) = Sum_{k = 0..n} A145901(n,k)*(x - 1)^(n-k). - Peter Bala, Jul 22 2014
Assuming an offset 0, the n-th row polynomial = (x - 1)^n * log(x) * Integral_{u = 0..inf} (2*floor(u) + 1)^n * x^(-u) du, provided x > 1. - Peter Bala, Feb 06 2015
The finite sums of consecutive odd integer powers is derived from this number triangle: Sum_{k=1..n}(2k-1)^m = Sum_{j=1..m+1}binomial(n+m+1-j,m+1)*T(m+1,j). - Tony Foster III, Feb 09 2018

A008459 Square the entries of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504, 44100, 14400, 2025, 100, 1
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), having k right turns. - Emeric Deutsch, Nov 23 2003
Product of A007318 and A105868. - Paul Barry, Nov 15 2005
Number of partitions that fit in an n X n box with Durfee square k. - Franklin T. Adams-Watters, Feb 20 2006
From Peter Bala, Oct 23 2008: (Start)
Narayana numbers of type B. Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p. 60]. See A063007 for the corresponding f-vectors for associahedra of type B_n. See A001263 for the h-vectors for associahedra of type A_n. The Hilbert transform of this triangular array is A108625 (see A145905 for the definition of this term).
Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i, j <= n + 1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A063007 is the corresponding array of f-vectors for these type A_n polytopes. See A086645 for the array of h-vectors for type C_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
(End)
The n-th row consists of the coefficients of the polynomial P_n(t) = Integral_{s = 0..2*Pi} (1 + t^2 - 2*t*cos(s))^n/Pi/2 ds. For example, when n = 3, we get P_3(t) = t^6 + 9*t^4 + 9*t^2 + 1; the coefficients are 1, 9, 9, 1. - Theodore Kolokolnikov, Oct 26 2010
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - Peter Bala, Jul 24 2013
From Colin Defant, Sep 16 2018: (Start)
Let s denote West's stack-sorting map. T(n,k) is the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 231, and 321. T(n,k) is also the number of permutations pi of [n+1] with k descents such that s(pi) avoids the patterns 132, 312, and 321.
T(n,k) is the number of permutations of [n+1] with k descents that avoid the patterns 1342, 3142, 3412, and 3421. (End)
The number of convex polyominoes whose smallest bounding rectangle has size (k+1)*(n+1-k) and which contain the lower left corner of the bounding rectangle (directed convex polyominoes). - Günter Rote, Feb 27 2019
Let P be the poset [n] X [n] ordered by the product order. T(n,k) is the number of antichains in P containing exactly k elements. Cf. A063746. - Geoffrey Critzer, Mar 28 2020

Examples

			Pascal's triangle begins
  1
  1  1
  1  2   1
  1  3   3   1
  1  4   6   4   1
  1  5  10  10   5   1
  1  6  15  20  15   6   1
  1  7  21  35  35  21   7   1
...
so the present triangle begins
  1
  1   1
  1   4    1
  1   9    9     1
  1  16   36    16     1
  1  25  100   100    25    1
  1  36  225   400   225   36   1
  1  49  441  1225  1225  441  49   1
...
		

References

  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
  • J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650
  • P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]

Crossrefs

Row sums are in A000984. Columns 0-3 are A000012, A000290, A000537, A001249.
Family of polynomials (see A062145): this sequence (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Cf. A007318, A055133, A116647, A001263, A086645, A063007, A108558, A108625 (Hilbert transform), A145903, A181543, A086645 (logarithmic derivative), A105868 (inverse binomial transform), A093118.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n,k)^2))); # Muniru A Asiru, Mar 30 2018
    
  • Magma
    /* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016
    
  • Maple
    seq(seq(binomial(n, k)^2, k=0..n), n=0..10);
  • Mathematica
    Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)
  • Maxima
    create_list(binomial(n,k)^2,n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • Maxima
    T(n,k):=if n=k then 1 else if k=0 then 1 else T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1); /* Vladimir Kruchinin, Oct 18 2014 */
    
  • Maxima
    A(x,y):=1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2);
    taylor(x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2),x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 23 2020 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0,n,(2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)),n,x),k,y)} \\ Paul D. Hanna, Oct 31 2010
    
  • Python
    def A008459(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2))**2 # Chai Wah Wu, Nov 12 2024

Formula

T(n,k) = A007318(n,k)^2. - Sean A. Irvine, Mar 29 2018
E.g.f.: exp((1+y)*x)*BesselI(0, 2*sqrt(y)*x). - Vladeta Jovovic, Nov 17 2003
G.f.: 1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2); g.f. for row n: (1-t)^n P_n[(1+t)/(1-t)] where the P_n's are the Legendre polynomials. - Emeric Deutsch, Nov 23 2003 [The original version of the bivariate g.f. has been modified with the roles of x and y interchanged so that now x corresponds to n and y to k. - Petros Hadjicostas, Oct 22 2017]
G.f. for column k is Sum_{j = 0..k} C(k, j)^2*x^(k+j)/(1 - x)^(2*k+1). - Paul Barry, Nov 15 2005
Column k has g.f. (x^k)*Legendre_P(k, (1+x)/(1-x))/(1 - x)^(k+1) = (x^k)*Sum_{j = 0..k} C(k, j)^2*x^j/(1 - x)^(2*k+1). - Paul Barry, Nov 19 2005
Let E be the operator D*x*D, where D denotes the derivative operator d/dx. Then (1/n!^2) * E^n(1/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} binomial(n+k, k)^2*x^k. For example, when n = 3 we have (1/3!)^2*E^3(1/(1 - x)) = (1 + 9*x + 9*x^2 + x^3)/(1 - x)^7 = (1/3!)^2 * Sum_{k >= 0} ((k+1)*(k+2)*(k+3))^2*x^k. - Peter Bala, Oct 23 2008
G.f.: A(x, y) = Sum_{n >= 0} (2*n)!/n!^2 * x^(2*n)*y^n/(1 - x - x*y)^(2*n+1). - Paul D. Hanna, Oct 31 2010
From Peter Bala, Jul 24 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Generating function: E(y)*E(x*y) = 1 + (1 + x)*y + (1 + 4*x + x^2)*y^2/2!^2 + (1 + 9*x + 9*x^2 + x^3)*y^3/3!^2 + .... Cf. the unsigned version of A021009 with generating function exp(y)*E(x*y).
The n-th power of this array has the generating function E(y)^n*E(x*y). In particular, the matrix inverse A055133 has the generating function E(x*y)/E(y). (End)
T(n,k) = T(n-1,k)*(n+k)/(n-k) + T(n-1,k-1), T(n,0) = T(n,n) = 1. - Vladimir Kruchinin, Oct 18 2014
Observe that the recurrence T(n,k) = T(n-1,k)*(n+k)/(n-k) - T(n-1,k-1), for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1 gives Pascal's triangle A007318. - Peter Bala, Dec 21 2014
n-th row polynomial R(n, x) = [z^n] (1 + (1 + x)*z + x*z^2)^n. Note that 1/n*[z^(n-1)] (1 + (1 + x)*z + x*z^2)^n gives the row polynomials of A001263. - Peter Bala, Jun 24 2015
Binomial transform of A105868. If G(x,t) = 1/sqrt(1 - 2*(1 + t)*x + (1 - t)^2*x^2) denotes the o.g.f. of this array then 1 + x*d/dx log(G(x,t)) = 1 + (1 + t)*x + (1 + 6*t + t^2)*x^2 + ... is the o.g.f. for A086645. - Peter Bala, Sep 06 2015
T(n,k) = Sum_{i=0..n} C(n-i,k)*C(n,i)*C(n+i,i)*(-1)^(n-i-k). - Vladimir Kruchinin, Jan 14 2018
G.f. satisfies A(x,y) = x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2). - Vladimir Kruchinin, Oct 23 2020
G.f. satisfies the differential equation y * d^2(A(x,y))/dy^2 - x^2 * d^2(x*A(x,y))/dx^2 + 2*x^2* A(x,y)^3 = 0. - Sergii Voloshyn, Mar 07 2025
T(n,k) = Sum_{i=0..n} C(2*n+1,i)*C(n+k-i,n)^2*(-1)^i. - Natalia L. Skirrow, Apr 14 2025

A108625 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the A_n lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 13, 19, 7, 1, 1, 21, 55, 37, 9, 1, 1, 31, 131, 147, 61, 11, 1, 1, 43, 271, 471, 309, 91, 13, 1, 1, 57, 505, 1281, 1251, 561, 127, 15, 1, 1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1, 1, 91, 1405, 6637, 12559, 11253, 5321, 1415, 217, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 12 2005

Keywords

Comments

Compare to the corresponding array A108553 of crystal ball sequences for D_n lattice.
From Peter Bala, Jul 18 2008: (Start)
Row reverse of A099608.
This array has a remarkable relationship with the constant zeta(2). The row, column and diagonal entries of the array occur in series acceleration formulas for zeta(2).
For the entries in row n we have zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k)). For example, n = 4 gives zeta(2) = 2*(1 - 1/4 + 1/9 - 1/16) + 1/(1*21) + 1/(4*21*131) + 1/(9*131*471) + ... . See A142995 for further details.
For the entries in column k we have zeta(2) = (1 + 1/4 + 1/9 + ... + 1/k^2) + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k)). For example, k = 4 gives zeta(2) = (1 + 1/4 + 1/9 + 1/16) + 2*(1/(1*9) - 1/(4*9*61) + 1/(9*61*309) - ... ). See A142999 for further details.
Also, as consequence of Apery's proof of the irrationality of zeta(2), we have a series acceleration formula along the main diagonal of the table: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n,n)*T(n-1,n-1)) = 5*(1/3 - 1/(2^2*3*19) + 1/(3^2*19*147) - ...).
There also appear to be series acceleration results along other diagonals. For example, for the main subdiagonal, calculation supports the result zeta(2) = 2 - Sum_{n >= 1} (-1)^(n+1)*(n^2+(2*n+1)^2)/(n^2*(n+1)^2*T(n,n-1)*T(n+1,n)) = 2 - 10/(2^2*7) + 29/(6^2*7*55) - 58/(12^2*55*471) + ..., while for the main superdiagonal we appear to have zeta(2) = 1 + Sum_{n >= 1} (-1)^(n+1)*((n+1)^2 + (2*n+1)^2)/(n^2*(n+1)^2*T(n-1,n)*T(n,n+1)) = 1 + 13/(2^2*5) - 34/(6^2*5*37) + 65/(12^2*37*309) - ... .
Similar series acceleration results hold for Apery's constant zeta(3) involving the crystal ball sequences for the product lattices A_n x A_n; see A143007 for further details. Similar results also hold between the constant log(2) and the crystal ball sequences of the hypercubic lattices A_1 x...x A_1 and between log(2) and the crystal ball sequences for lattices of type C_n ; see A008288 and A142992 respectively for further details. (End)
This array is the Hilbert transform of triangle A008459 (see A145905 for the definition of the Hilbert transform). - Peter Bala, Oct 28 2008

Examples

			Square array begins:
  1,   1,    1,     1,      1,       1,       1, ... A000012;
  1,   3,    5,     7,      9,      11,      13, ... A005408;
  1,   7,   19,    37,     61,      91,     127, ... A003215;
  1,  13,   55,   147,    309,     561,     923, ... A005902;
  1,  21,  131,   471,   1251,    2751,    5321, ... A008384;
  1,  31,  271,  1281,   4251,   11253,   25493, ... A008386;
  1,  43,  505,  3067,  12559,   39733,  104959, ... A008388;
  1,  57,  869,  6637,  33111,  124223,  380731, ... A008390;
  1,  73, 1405, 13237,  79459,  350683, 1240399, ... A008392;
  1,  91, 2161, 24691, 176251,  907753, 3685123, ... A008394;
  1, 111, 3191, 43561, 365751, 2181257, ...      ... A008396;
  ...
As a triangle:
  [0]  1
  [1]  1,  1
  [2]  1,  3,   1
  [3]  1,  7,   5,    1
  [4]  1, 13,  19,    7,    1
  [5]  1, 21,  55,   37,    9,    1
  [6]  1, 31, 131,  147,   61,   11,   1
  [7]  1, 43, 271,  471,  309,   91,  13,   1
  [8]  1, 57, 505, 1281, 1251,  561, 127,  15,  1
  [9]  1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1
       ...
Inverse binomial transform of rows yield rows of triangle A063007:
  1;
  1,  2;
  1,  6,   6;
  1, 12,  30,  20;
  1, 20,  90, 140,  70;
  1, 30, 210, 560, 630, 252; ...
Product of the g.f. of row n and (1-x)^(n+1) generates the symmetric triangle A008459:
  1;
  1,  1;
  1,  4,   1;
  1,  9,   9,   1;
  1, 16,  36,  16,  1;
  1, 25, 100, 100, 25, 1;
  ...
		

Crossrefs

Rows include: A003215 (row 2), A005902 (row 3), A008384 (row 4), A008386 (row 5), A008388 (row 6), A008390 (row 7), A008392 (row 8), A008394 (row 9), A008396 (row 10).
Cf. A063007, A099601 (n-th term of A_{2n} lattice), A108553.
Cf. A008459 (h-vectors type B associahedra), A145904, A145905.
Cf. A005258 (main diagonal), A108626 (antidiagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n,j)^2*Binomial(n+k-j,k-j): j in [0..k]]) >; // array
    A108625:= func< n,k | T(n-k,k) >; // antidiagonals
    [A108625(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    T := (n,k) -> binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Feb 10 2018
  • Mathematica
    T[n_, k_]:= HypergeometricPFQ[{-n, -k, n+1}, {1, 1}, 1] (* Michael Somos, Jun 03 2012 *)
  • PARI
    T(n,k)=sum(i=0,k,binomial(n,i)^2*binomial(n+k-i,k-i))
    
  • SageMath
    def T(n,k): return sum(binomial(n,j)^2*binomial(n+k-j, k-j) for j in range(k+1)) # array
    def A108625(n,k): return T(n-k, k) # antidiagonals
    flatten([[A108625(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, k) = Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f. for row n: (Sum_{i=0..n} C(n, i)^2 * x^i)/(1-x)^(n+1).
Sum_{k=0..n} T(n-k, k) = A108626(n) (antidiagonal sums).
From Peter Bala, Jul 23 2008 (Start):
O.g.f. row n: 1/(1 - x)*Legendre_P(n,(1 + x)/(1 - x)).
G.f. for square array: 1/sqrt((1 - x)*((1 - t)^2 - x*(1 + t)^2)) = (1 + x + x^2 + x^3 + ...) + (1 + 3*x + 5*x^2 + 7*x^3 + ...)*t + (1 + 7*x + 19*x^2 + 37*x^3 + ...)*t^2 + ... . Cf. A142977.
Main diagonal is A005258.
Recurrence relations:
Row n entries: (k+1)^2*T(n,k+1) = (2*k^2+2*k+n^2+n+1)*T(n,k) - k^2*T(n,k-1), k = 1,2,3,... ;
Column k entries: (n+1)^2*T(n+1,k) = (2*k+1)*(2*n+1)*T(n,k) + n^2*T(n-1,k), n = 1,2,3,... ;
Main diagonal entries: (n+1)^2*T(n+1,n+1) = (11*n^2+11*n+3)*T(n,n) + n^2*T(n-1,n-1), n = 1,2,3,... .
Series acceleration formulas for zeta(2):
Row n: zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k));
Column k: zeta(2) = 1 + 1/2^2 + 1/3^2 + ... + 1/k^2 + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k));
Main diagonal: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,n-1)*T(n,n)).
Conjectural result for superdiagonals: zeta(2) = 1 + 1/2^2 + ... + 1/k^2 + Sum_{n >= 1} (-1)^(n+1) * (5*n^2 + 6*k*n + 2*k^2)/(n^2*(n+k)^2*T(n-1,n+k-1)*T(n,n+k)), k = 0,1,2... .
Conjectural result for subdiagonals: zeta(2) = 2*(1 - 1/2^2 + ... + (-1)^(k+1)/k^2) + (-1)^k*Sum_{n >= 1} (-1)^(n+1)*(5*n^2 + 4*k*n + k^2)/(n^2*(n+k)^2*T(n+k-1,n-1)*T(n+k,n)), k = 0,1,2... .
Conjectural congruences: the main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) = S(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers m and r. If p is prime of the form 4*n + 1 we can write p = a^2 + b^2 with a an odd number. Then calculation suggests the congruence S((p-1)/2) == 2*a^2 (mod p). (End)
From Michael Somos, Jun 03 2012: (Start)
T(n, k) = hypergeom([-n, -k, n + 1], [1, 1], 1).
T(n, n-1) = A208675(n).
T(n+1, n) = A108628(n). (End)
T(n, k) = binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1). - Peter Luschny, Feb 10 2018
From Peter Bala, Jun 23 2023: (Start)
T(n, k) = Sum_{i = 0..k} (-1)^i * binomial(n, i)*binomial(n+k-i, k-i)^2.
T(n, k) = binomial(n+k, k)^2 * hypergeom([-n, -k, -k], [-n - k, -n - k], 1). (End)
From Peter Bala, Jun 28 2023; (Start)
T(n,k) = the coefficient of (x^n)*(y^k)*(z^n) in the expansion of 1/( (1 - x - y)*(1 - z ) - x*y*z ).
T(n,k) = B(n, k, n) in the notation of Straub, equation 24.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, -k], [1, 1], 1) allows the table indexing to be extended to negative values of n and k; clearly, we find that T(-n,k) = T(n-1,k) for all n and k. It appears that T(n,-k) = (-1)^n*T(n,k-1) for n >= 0, while T(n,-k) = (-1)^(n+1)*T(n,k-1) for n <= -1 [added Sep 10 2023: these follow from the identities immediately below]. (End)
T(n,k) = Sum_{i = 0..n} (-1)^(n+i) * binomial(n, i)*binomial(n+i, i)*binomial(k+i, i) = (-1)^n * hypergeom([n + 1, -n, k + 1], [1, 1], 1). - Peter Bala, Sep 10 2023
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n,k) = T(n-k, k) (antidiagonals).
t(n, k) = Hypergeometric3F2([k-n, -k, n-k+1], [1,1], 1).
T(n, 2*n) = A363867(n).
T(3*n, n) = A363868(n).
T(2*n, 2*n) = A363869(n).
T(n, 3*n) = A363870(n).
T(2*n, 3*n) = A363871(n). (End)
T(n, k) = Sum_{i = 0..n} binomial(n, i)*binomial(n+i, i)*binomial(k, i). - Peter Bala, Feb 26 2024
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n, k) = A005259(n), the Apéry numbers associated with zeta(3). - Peter Bala, Jul 18 2024
From Peter Bala, Sep 21 2024: (Start)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*T(n, k) = binomial(2*n, n) = A000984(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n-1, n-k) = A376458(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(i, k) = A143007(n, i). (End)
From Peter Bala, Oct 12 2024: (Start)
The square array = A063007 * transpose(A007318).
Conjecture: for positive integer m, Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * T(m*n, k) = ((m+1)*n)!/( ((m-1)*n)!*n!^2) (verified up to m = 10 using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). (End)

A047969 Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0

Views

Author

Keywords

Comments

If each row started with an initial 0 (i.e., a(n,k) = (n+1)^k - n^k) then each row would be the binomial transform of the preceding row. - Henry Bottomley, May 31 2001
a(n-1, k-1) is the number of ordered k-tuples of positive integers such that the largest of these integers is n. - Alford Arnold, Sep 07 2005
From Alford Arnold, Jul 21 2006: (Start)
The sequences in A047969 can also be calculated using the Eulerian Array (A008292) and Pascal's Triangle (A007318) as illustrated below: (cf. A101095).
1 1 1 1 1 1
1 1 1 1 1 1
-----------------------------------------
1 2 3 4 5 6
1 2 3 4 5
1 3 5 7 9 11
-----------------------------------------
1 3 6 10 15 21
4 12 24 40 60
1 3 6 10
1 7 19 37 61 91
-----------------------------------------
1 4 10 20 35 56
11 44 110 220 385
11 44 110 220
1 4 10
1 15 65 175 369 671
----------------------------------------- (End)
From Peter Bala, Oct 26 2008: (Start)
The above remarks of Alford Arnold may be summarized by saying that (the transpose of) this array is the Hilbert transform of the triangle of Eulerian numbers A008292 (see A145905 for the definition of the Hilbert transform). In this context, A008292 is best viewed as the array of h-vectors of permutohedra of type A. See A108553 for the Hilbert transform of the array of h-vectors of type D permutohedra. Compare this array with A009998.
The polynomials n^k - (n-1)^k, k = 1,2,3,..., which give the nonzero entries in the columns of this array, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re s = 1/2 in the complex plane. See A019538 for the connection between the polynomials n^k - (n-1)^k and the Stirling polynomials of the simplicial complexes dual to the type A permutohedra.
(End)
Empirical: (n+1)^(k+1) - n^(k+1) is the number of first differences of length k+1 arrays of numbers in 0..n, k > 0. - R. H. Hardin, Jun 30 2013
a(n-1, k-1) is the number of bargraphs of width k and height n. Examples: a(1,2) = 7 because we have [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], and [2,2,2]; a(2,1) = 5 because we have [1,3], [2,3], [3,1], [3,2], and [3,3] (bargraphs are given as compositions). This comment is equivalent to A. Arnold's Sep 2005 comment. - Emeric Deutsch, Jan 30 2017

Examples

			Array a begins:
  [n\k][0  1   2    3    4   5  6  ...
  [0]   1  1   1    1    1   1  1  ...
  [1]   1  3   7   15   31  63  ...
  [2]   1  5  19   65  211  ...
  [3]   1  7  37  175  ...
  ...
Triangle T begins:
  n\m   0   1    2     3     4      5      6      7      8     9  10 ...
  0:    1
  1:    1   1
  2:    1   3    1
  3:    1   5    7     1
  4:    1   7   19    15     1
  5:    1   9   37    65    31      1
  6:    1  11   61   175   211     63      1
  7:    1  13   91   369   781    665    127      1
  8:    1  15  127   671  2101   3367   2059    255      1
  9:    1  17  169  1105  4651  11529  14197   6305    511     1
  10:   1  19  217  1695  9031  31031  61741  58975  19171  1023   1
  ...  - _Wolfdieter Lang_, May 07 2021
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Cf. A047970.
Cf. A009998, A108553 (Hilbert transform of array of h-vectors of type D permutohedra), A145904, A145905.
Row n sequences of array a: A000012, A000225(k+1), A001047(k+1), A005061(k+1), A005060(k+1), A005062(k+1), A016169(k+1), A016177(k+1), A016185(k+1), A016189(k+1), A016195(k+1), A016197(k+1).
Column k sequences of array a: (nexus numbers): A000012, A005408, A003215, A005917(n+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Cf. A343237 (row reversed triangle).

Programs

  • Mathematica
    Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
  • Maxima
    T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */

Formula

From Vladimir Kruchinin: (Start)
O.g.f. of e.g.f of rows of array: ((1-x)*exp(y))/(1-x*exp(y))^2.
T(n,m) = Sum_{k=0..m} k!*(-1)^(m+k)*Stirling2(m,k)*C(n+k-1,n), T(n,0)=1.(End)
From Wolfdieter Lang, May 07 2021: (Start)
T(n,m) = a(n-m,m) = (n-m+1)^(m+1) - (n-m)^(m+1), n >= 0, m = 0, 1,..., n.
O.g.f. column k of the array: polylog(-(k+1), x)*(1-x)/x. See the Peter Bala comment above, and the Eulerian triangle A008292 formula by Vladeta Jovovic, Sep 02 2002.
E.g.f. of e.g.f. of row of the array: exp(y)*(1 + x*(exp(y) - 1))*exp(x*exp(y)).
O.g.f. of triangle's exponential row polynomials R(n, y) = Sum_{m=0} T(n, m)*(y^m)/m!: G(x, y) = exp(x*y)*(1 - x)/(1 - x*exp(x*y))^2. (End)

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A009998 Triangle in which j-th entry in i-th row is (j+1)^(i-j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 6, 1, 1, 64, 243, 256, 125, 36, 7, 1, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Keywords

Comments

Read as a square array this is the Hilbert transform of triangle A123125 (see A145905 for the definition of this term). For example, the fourth row of A123125 is (0,1,4,1) and the expansion (x + 4*x^2 + x^3)/(1-x)^4 = x + 8*x^2 + 27*x^3 + 64*x^4 + ... generates the entries in the fourth row of this array read as a square. - Peter Bala, Oct 28 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  8,  9,  4,  1;
  1, 16, 27, 16,  5,  1;
  1, 32, 81, 64, 25,  6,  1;
  ...
From _Gus Wiseman_, May 01 2021: (Start)
The rows of the triangle are obtained by reading antidiagonals upward in the following table of A(k,n) = n^k, with offset k = 0, n = 1:
         n=1:     n=2:     n=3:     n=4:     n=5:     n=6:
   k=0:   1        1        1        1        1        1
   k=1:   1        2        3        4        5        6
   k=2:   1        4        9       16       25       36
   k=3:   1        8       27       64      125      216
   k=4:   1       16       81      256      625     1296
   k=5:   1       32      243     1024     3125     7776
   k=6:   1       64      729     4096    15625    46656
   k=7:   1      128     2187    16384    78125   279936
   k=8:   1      256     6561    65536   390625  1679616
   k=9:   1      512    19683   262144  1953125 10077696
  k=10:   1     1024    59049  1048576  9765625 60466176
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.

Crossrefs

Row sums give A026898.
Column n = 2 of the array is A000079.
Column n = 3 of the array is A000244.
Row k = 2 of the array is A000290.
Row k = 3 of the array is A000578.
Diagonal n = k of the array is A000312.
Diagonal n = k + 1 of the array is A000169.
Diagonal n = k + 2 of the array is A000272.
The transpose of the array is A009999.
The numbers of divisors of the entries are A343656 (row sums: A343657).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Haskell
    a009998 n k = (k + 1) ^ (n - k)
    a009998_row n = a009998_tabl !! n
    a009998_tabl = map reverse a009999_tabl
    -- Reinhard Zumkeller, Feb 02 2014
    
  • Maple
    E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
    G := (n,x) -> E(n,x)/(1-x)^(n+1);
    A009998 := (n,k) -> coeff(series(G(n-k,x),x,18),x,k);
    seq(print(seq(A009998(n,k),k=0..n)),n=0..6);
    # Peter Luschny, Aug 02 2010
  • Mathematica
    Flatten[Table[(j+1)^(i-j),{i,0,20},{j,0,i}]] (* Harvey P. Dale, Dec 25 2012 *)
  • PARI
    T(i,j)=(j+1)^(i-j) \\ Charles R Greathouse IV, Feb 06 2017

Formula

T(n,n) = 1; T(n,k) = (k+1)*T(n-1,k) for k=0..n-1. - Reinhard Zumkeller, Feb 02 2014
T(n,m) = (m+1)*Sum_{k=0..n-m}((n+1)^(k-1)*(n-m)^(n-m-k)*(-1)^(n-m-k)*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Sep 12 2015

Extensions

a(62) corrected to 512 by T. D. Noe, Dec 20 2007

A145901 Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n.

Original entry on oeis.org

1, 1, 2, 1, 8, 8, 1, 26, 72, 48, 1, 80, 464, 768, 384, 1, 242, 2640, 8160, 9600, 3840, 1, 728, 14168, 72960, 151680, 138240, 46080, 1, 2186, 73752, 595728, 1948800, 3037440, 2257920, 645120, 1, 6560, 377504, 4612608, 22305024, 52899840
Offset: 0

Views

Author

Peter Bala, Oct 26 2008

Keywords

Comments

The Coxeter group of type B_n may be realized as the group of n X n matrices with exactly one nonzero entry in each row and column, that entry being either +1 or -1. The order of the group is 2^n*n!. The orbit of the point (1,2,...,n) (or any sufficiently generic point (x_1,...,x_n)) under the action of this group is a set of 2^n*n! distinct points whose convex hull is defined to be the permutohedron of type B_n. The rows of this table are the f-vectors of the simplicial complexes dual to these type B permutohedra. Some examples are given in the Example section below. See A060187 for the corresponding table of h-vectors of type B permutohedra.
This is the (unsigned) triangle of connection constants between the polynomial sequences (2*x + 1)^n, n >= 0, and binomial(x+k,k), k >= 0. For example, (2*x + 1)^2 = 8*binomial(x+2,2) - 8*binomial(x+1,1) + 1 and (2*x + 1)^3 = 48*binomial(x+3,3) - 72*binomial(x+2,2) + 26*binomial(x+1,1) - 1. Cf. A163626. - Peter Bala, Jun 06 2019

Examples

			The triangle begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1
1..|..1.....2
2..|..1.....8.....8
3..|..1....26....72....48
4..|..1....80...464...768...384
5..|..1...242..2640..8160..9600..3840
...
Row 2: the permutohedron of type B_2 is an octagon with 8 vertices and 8 edges. Its dual, also an octagon, has f-vector (1,8,8) - row 3 of this triangle.
Row 3: for an appropriate choice of generic point in R_3, the permutohedron of type B_3 is realized as the great rhombicuboctahedron, also known as the truncated cuboctahedron, with 48 vertices, 72 edges and 26 faces (12 squares, 8 regular hexagons and 6 regular octagons). See the Wikipedia entry and also [Fomin and Reading p.22]. Its dual polyhedron is a simplicial polyhedron, the disdyakis dodecahedron, with 26 vertices, 72 edges and 48 triangular faces and so its f-vector is (1,26,72,48) - row 4 of this triangle.
From _Peter Bala_, Jun 06 2019: (Start)
Examples of falling factorials identities for odd numbered rows: Let (x)_n = x*(x - 1)*...*(x - n + 1) with (x)_0 = 1 denote the falling factorial power.
Row 1: 2*(x)_1 + (0 - 2*x)_1 = 0.
Row 3: 48*(x)_3 + 72*(x)_2 * (2 - 2*x)_1 + 26*(x)_1 * (2 - 2*x)_2 + (2 - 2*x)_3 = 0
Row 5: 3840*(x)_5 + 9600*(x)_4 * (4 - 2*x)_(1) + 8160*(x)_3 * (4 - 2*x)_2 + 2640*(x)_2 * (4 - 2*x)_3 + 242*(x)_1 * (4 - 2*x)_4 + (4 - 2*x)_5 = 0. (End)
		

Crossrefs

Cf. A019538 (f-vectors type A permutohedra), A060187 (h-vectors type B permutohedra), A080253 (row sums), A145905, A062715, A028246.

Programs

  • Maple
    with(combinat):
    T:= (n,k) -> add((-1)^(k-i)*binomial(k,i)*(2*i+1)^n,i = 0..k):
    for n from 0 to 9 do
    seq(T(n,k),k = 0..n);
    end do;
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*(2*i + 1)^n, {i, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 02 2019 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(2*i+1)^n.
Recurrence relation: T(n,k) = (2*k + 1)*T(n-1,k) + 2*k*T(n-1,k-1) with T(0,0) = 1 and T(0,k) = 0 for k >= 1.
Relation with type B Stirling numbers of the second kind: T(n,k) = 2^k*k!*A039755(n,k).
Row sums A080253. The matrix product A060187 * A007318 produces the mirror image of this triangle.
E.g.f.: exp(t)/(1 + x - x* exp(2*t)) = 1 + (1 + 2*x)*t + (1 + 8*x + 8*x^2 )*t^2/2! + ... .
From Peter Bala, Oct 13 2011: (Start)
The polynomials in the first column of the array ((1+t)*P^(-1)-t*P)^(-1), P Pascal's triangle and I the identity, are the row polynomials of this table.
The polynomials in the first column of the array ((1+t)*I-t*A062715)^(-1) are, apart from the initial 1, the row polynomials of this table with an extra factor of t. Cf. A060187. (End)
From Peter Bala, Jul 18 2013: (Start)
Integrating the above e.g.f. with respect to x from x = 0 to x = 1 gives Sum_{k = 0..n} (-1)^k*T(n,k)/(k + 1) = 2^n*Bernoulli(n,1/2), the n-th cosecant number.
The corresponding Type A result is considered in A028246 as Worpitzky's algorithm.
Also for n >= 0, Sum_{k = 0..2*n} (-1)^k*T(2*n,k)/((k + 1)*(k + 2)) = 1/2*2^(2*n)*Bernoulli(2*n,1/2) and for n >= 1, Sum_{k = 0..2*n-1} (-1)^k*T(2*n - 1,k)/((k + 1)*(k + 2)) = -1/2 * 2^(2*n)* Bernoulli(2*n,1/2).
The nonzero cosecant numbers are given by A001896/A001897. (End)
From Peter Bala, Jul 22 2014: (Start)
The row polynomials R(n,x) satisfy the recurrence equation R(n+1,x) = D(R(n,x)) with R(0,x) = 1, where D is the operator 1 + 2*x + 2*x(1 + x)*d/dx.
R(n,x) = 1/(1 + x)* Sum_{k = 0..inf} (2*k + 1)^n*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf. A019538.
The shifted row polynomial x*R(n,x) = (1 + x)^n*P(n,x/(1 + x)) where P(n,x) denotes the n-th row polynomial of A060187.
The row polynomials R(n,x) have only real zeros.
Symmetry: R(n,x) = (-1)^n*R(n,-1 - x). Consequently the zeros of R(n,x) lie in the open interval (-1, 0). (End)
From Peter Bala, May 28 2015: (Start)
Recurrence for row polynomials: R(n,x) = 1 + x*Sum_{k = 0..n-1} binomial(n,k)2^(n-k)*R(k,x) with R(0,x) = 1.
For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(k,z))) )^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). A(k,z) = A(-(k + 1),-z). Cf. A019538.
For cases see A258377 (k = 1), A258378(k = 2), A258379 (k = 3), A258380 (k = 4) and A258381 (k = 5). (End)
T(n,k) = A154537(n,k)*k! = A039755(n,k)*(2^k*k!), 0 <= k <= n. - Wolfdieter Lang, Apr 19 2017
From Peter Bala, Jan 12 2018: (Start)
n-th row polynomial R(n,x) = (1 + 2*x) o (1 + 2*x) o ... o (1 + 2*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E13 in the Bala link.
R(n,x) = Sum_{k = 0..n} binomial(n,k)*2^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)
Showing 1-10 of 12 results. Next