Original entry on oeis.org
1, 37, 5321, 980407, 201186025, 43859522037, 9939874413899, 2314357836947571, 549694303511409641, 132569070434503802605, 32360243622138480889321, 7977001183875449759759807, 1982402220908671654519130731, 496031095735572731850517509727
Offset: 0
-
A363871:= func< n | (&+[Binomial(2*n,j)^2*Binomial(5*n-j,2*n): j in [0..2*n]]) >;
[A363871(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
seq(simplify(A108625(2*n, 3*n)), n = 0..20);
-
Table[HypergeometricPFQ[{-2*n,-3*n,2*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
def A363871(n): return sum(binomial(2*n,j)^2*binomial(5*n-j,2*n) for j in range(2*n+1))
[A363871(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
A376458
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k).
Original entry on oeis.org
1, 1, -7, 1, 569, -3749, -45151, 806737, 1052729, -130060889, 740060243, 16076432923, -238772815711, -1050791121197, 49401000432497, -171944622257999, -7658491447803847, 87632552103603679, 768037618172427023, -22023427875902878553, 19183786570616924819, 4030690809877385503081, -33792039667279104716677, -520860578851790657166869
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 806737 - 1 = (2^4)*3*(7^5) == 0 (mod 7^5).
a(11) - a(1) = 16076432923 - 1 = 2*3*(11^5)*127*131 == 0 (mod 11^5).
a(5^2) - a(5) = 22511570786292886382808751 - (-3749) = (2^2)*(3^2)*(5^9)*67*97*
7741*49223*129289 == 0 (mod 5^9).
-
A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k), k = 0..n):
seq(a(n), n = 0..25);
A108626
Antidiagonal sums of square array A108625, in which row n equals the crystal ball sequence for A_n lattice.
Original entry on oeis.org
1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919, 125578, 406865, 1322772, 4313155, 14099524, 46192483, 151628090, 498578411, 1641921014, 5414619739, 17878144968, 59097039545, 195548471268, 647665451911, 2146947613286
Offset: 0
Log(A(x)) = 2*x + 6*x^2/2 + 20*x^3/3 + ... + A108627(n)*x^n/n + ...
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/Sqrt(1-4*x+2*x^2+x^4) )); // G. C. Greubel, Oct 06 2023
-
a := n -> add(binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 1), k=0..n):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 13 2018
-
CoefficientList[Series[1/Sqrt[x^4+2*x^2-4*x+1], {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
-
a(n)=sum(k=0,n,sum(i=0,k,binomial(n-k,i)^2*binomial(n-i,k-i)))
-
{a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(m+1)) , n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
-
def A108626_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/sqrt(1-4*x+2*x^2+x^4) ).list()
A108626_list(40) # G. C. Greubel, Oct 06 2023
A376466
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)^2*A108625(n-1, k).
Original entry on oeis.org
1, 3, 127, 9435, 866751, 89591753, 9988439203, 1173951006987, 143456999185855, 18063466831218981, 2329136571942011877, 306174745758226208537, 40896708938016175140963, 5536767359542664588001285, 758259747093486125157272779, 104880152366856305370319427435, 14632959744552362547801104612799
Offset: 0
-
A108625(n, k) := add( binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)^2*A108625(n-1, k), k = 0..n):
seq(a(n), n = 0..25);
Original entry on oeis.org
1, 5, 61, 923, 15421, 272755, 5006275, 94307855, 1811113021, 35301145037, 696227550811, 13863654392945, 278264498108611, 5622746346645953, 114268249446672151, 2333733620675302423, 47868774493665731645, 985608360056821004233, 20362035153323824192645
Offset: 0
-
A363867:= func< n | (&+[Binomial(n,j)^2*Binomial(2*n+j,n): j in [0..n]]) >;
[A363867(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
seq(simplify(A108625(n, 2*n)), n = 0..18);
-
Table[HypergeometricPFQ[{-n,-2*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
def A363867(n): return sum(binomial(n,j)^2*binomial(2*n+j,n) for j in range(n+1))
[A363867(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
Original entry on oeis.org
1, 13, 505, 24691, 1337961, 76869013, 4586370139, 280973874215, 17552736006121, 1113134497824901, 71437216036404505, 4629194489296980715, 302391678415222922475, 19886936616891022422159, 1315438146193644502479255, 87445220568000089973356191, 5838332204000163260729138153
Offset: 0
-
A363868:= func< n | (&+[Binomial(3*n,n-j)^2*Binomial(3*n+j,j): j in [0..n]]) >;
[A363868(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
seq(simplify(A108625(3*n, n)), n = 0..16);
-
Table[HypergeometricPFQ[{-3*n,-n,3*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
def A363868(n): return sum(binomial(3*n,n-j)^2*binomial(3*n+j, j) for j in range(n+1))
[A363868(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
Original entry on oeis.org
1, 55, 12559, 3685123, 1205189519, 418856591055, 151353475289275, 56193989426243199, 21283943385478109071, 8185785098679048061837, 3186604888590691870779559, 1252744279186835597251089055, 496508748101370063304243706939, 198134918989716743103591120933103
Offset: 0
-
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
seq(simplify(A108625(3*n, 2*n)), n = 0..20);
-
A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1];
Array[A363869, 20, 0] (* Paolo Xausa, Feb 26 2024 *)
Original entry on oeis.org
1, 7, 127, 2869, 71631, 1894007, 51978529, 1464209383, 42050906191, 1225778575021, 36156060825127, 1076772406867549, 32324178587781393, 976893529756053501, 29693248490460447747, 907027175886637081619, 27826656707376811715663, 856949305975908664414097
Offset: 0
-
A363870:= func< n | (&+[Binomial(n,j)^2*Binomial(3*n+j,n): j in [0..n]]) >;
[A363870(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
seq(simplify(A108625(n, 3*n)), n = 0..20);
-
Table[HypergeometricPFQ[{-n,-3*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
def A363870(n): return sum(binomial(n,j)^2*binomial(3*n+j,n) for j in range(n+1))
[A363870(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
A364243
a(n) = A108625(2*n-1, n-1) for n >= 1.
Original entry on oeis.org
1, 13, 271, 6637, 176251, 4914427, 141573251, 4174790893, 125288929171, 3811804637263, 117248436333601, 3638993432201563, 113790712076898871, 3580847269415337487, 113299135244467189771, 3601766951734150461677, 114973519461796962202051
Offset: 1
-
seq(add(binomial(2*n-1,k)^2 * binomial(3*n-2-k,2*n-1), k = 0..n-1), n = 1..20);
# alternative program
seq( simplify(binomial(2*n-1,n-1)^2 * hypergeom([1 - n, 1 - n, 2*n], [1 + n, 1 + n], 1)), n = 1..20);
-
Table[Binomial[2*n-1, n-1]^2 * HypergeometricPFQ[{1 - n, 1 - n, 2*n}, {1 + n, 1 + n}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 16 2023 *)
A376459
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k).
Original entry on oeis.org
1, -1, -17, 143, 751, -20251, 30871, 2584847, -21586193, -251907751, 5176221733, 5498864117, -913327142441, 5540080670669, 120825094592983, -1860921180719857, -8346832617144593, 401702184476719649, -1403893237226212151, -64680833271083055607, 743195619082337134501, 6754996433001423371159, -192371016736634220839987, 139058974519768723621493, 36163089652079749214625751, -298797649039016749340832751
Offset: 0
Examples of supercongruences:
(1a) a(11) - a(1) = 5498864117 - (-1) = 2*(3^3)*(11^3)*76507 == 0 (mod 11^3);
(1b) a(10) - a(0) = 5176221733 - 1 = (2^2)*(3^5)*(11^3)*4001 == 0 (mod 11^3).
(2a) a(5^2) - a(5) = -298797649039016749340832751 - (-20251) = -(2^2)*3*(5^6)*(11^2)*47*89*1683049*1870707593 == 0 (mod 5^6);
(2b) a(5^2 - 1) - a(5 - 1) = 36163089652079749214625751 - 751 = (2^3)*3*(5^6)*7*11*17*101*729412564491671 == 0 (mod 5^6).
-
A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k), k = 0..n):
seq(a(n), n = 0..25);
Showing 1-10 of 54 results.
Comments