cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A363871 a(n) = A108625(2*n, 3*n).

Original entry on oeis.org

1, 37, 5321, 980407, 201186025, 43859522037, 9939874413899, 2314357836947571, 549694303511409641, 132569070434503802605, 32360243622138480889321, 7977001183875449759759807, 1982402220908671654519130731, 496031095735572731850517509727
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(2*n, 3*n, 2*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363869 (r = 3, s = 2) and A363870 (r = 1, s = 3).

Crossrefs

Programs

  • Magma
    A363871:= func< n | (&+[Binomial(2*n,j)^2*Binomial(5*n-j,2*n): j in [0..2*n]]) >;
    [A363871(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(2*n, 3*n)), n = 0..20);
  • Mathematica
    Table[HypergeometricPFQ[{-2*n,-3*n,2*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363871(n): return sum(binomial(2*n,j)^2*binomial(5*n-j,2*n) for j in range(2*n+1))
    [A363871(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..2*n} binomial(2*n, k)^2 * binomial(5*n-k, 2*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(2*n, k)*binomial(5*n-k, 2*n)^2.
a(n) = hypergeometric3F2([-2*n, -3*n, 2*n+1], [1, 1], 1).
a(n) = [x^(3*n)] 1/(1 - x)*Legendre_P(2*n, (1 + x)/(1 - x)).
a(n) ~ sqrt(1700 + 530*sqrt(10)) * (98729 + 31220*sqrt(10))^n / (120 * Pi * n * 3^(6*n)). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..2*n} binomial(2*n, k) * binomial(3*n, k) * binomial(2*n+k, k). - Peter Bala, Feb 26 2024

A376458 a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k).

Original entry on oeis.org

1, 1, -7, 1, 569, -3749, -45151, 806737, 1052729, -130060889, 740060243, 16076432923, -238772815711, -1050791121197, 49401000432497, -171944622257999, -7658491447803847, 87632552103603679, 768037618172427023, -22023427875902878553, 19183786570616924819, 4030690809877385503081, -33792039667279104716677, -520860578851790657166869
Offset: 0

Views

Author

Peter Bala, Sep 23 2024

Keywords

Comments

Compare with the following identity relating the sequence of Apéry numbers to the table of crystal ball sequences for the A_n lattices: A005259(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k), which can be verified by using the MulZeil procedure in Zeilberger's MultiZeilberger Maple package to find a recurrence for the double sum on the right-hand side of the identity.
The sequence of Apéry numbers A005259 satisfies the supercongruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies same supercongruences and in addition satisfies the stronger congruences a(p) == a(1) (mod p^5) for all primes p >= 7 (checked up to p = 199) and a(p^r) == a(p^(r-1)) (mod p^(3*r+3)) for all primes p >= 5 and integers r >= 2.

Examples

			Examples of supercongruences:
a(7) - a(1) = 806737 - 1 = (2^4)*3*(7^5) == 0 (mod 7^5).
a(11) - a(1) = 16076432923 - 1 =  2*3*(11^5)*127*131 == 0 (mod 11^5).
a(5^2) - a(5) = 22511570786292886382808751 - (-3749) = (2^2)*(3^2)*(5^9)*67*97*
7741*49223*129289 == 0 (mod 5^9).
		

Crossrefs

Programs

  • Maple
    A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
    a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n-1, n-k), k = 0..n):
    seq(a(n), n = 0..25);

Formula

a(n) = Sum_{0 <= i <= k <= n} (-1)^k * binomial(n, k) * binomial(2*n-k, n-k) * binomial(n-1, i)^2 * binomial(n+k-i-1, k-i).
P-recursive: (2*n - 3)*n^3*(n - 1)^2*(473*n^5 - 4988*n^4 + 20888*n^3 - 43462*n^2 + 45019*n - 18634)*a(n) = - 2*(n - 1)^2*(3784*n^9 - 51256*n^8 + 303801*n^7 - 1037327*n^6 + 2252744*n^5 - 3220636*n^4 + 3006247*n^3 - 1739455*n^2 + 555714*n - 75024)*a(n-1) - 2*(n - 2)*(2*n - 1)*(52030*n^9 - 756800*n^8 + 4787337*n^7 - 17271387*n^6 + 39143817*n^5 - 57806236*n^4 + 55708921*n^3 - 33926177*n^2 + 11955879*n - 1890360)*a(n-2) - 2*(n - 2)*(n - 3)^3*(2*n - 1)*(2*n - 3)*(473*n^5 - 2623*n^4 + 5666*n^3 - 5996*n^2 + 3172*n - 704)*a(n-3) with a(0) = 1, a(1) = -1 and a(2) = 7.

A108626 Antidiagonal sums of square array A108625, in which row n equals the crystal ball sequence for A_n lattice.

Original entry on oeis.org

1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919, 125578, 406865, 1322772, 4313155, 14099524, 46192483, 151628090, 498578411, 1641921014, 5414619739, 17878144968, 59097039545, 195548471268, 647665451911, 2146947613286
Offset: 0

Views

Author

Paul D. Hanna, Jun 12 2005

Keywords

Comments

Limit a(n+1)/a(n) = 3.3829757679... = 1/r = 3 + r + r^2, where r is radius of convergence of A(x), which diverges at x=r.
Infinitely many recurrence relations of even order 2d can be built for this sequence; first define the following polynomial: P(d) = (1/2^d) * Sum_{i=0..floor(d/2)} binomial(d, 2*i) * (x^4 + 2*x^2 - 4*x + 1)^i * (x^2 + 2*x - 1)^(d - 2*i) then call c(d,k) the coefficient of term with power k in the polynomial P(d); then we have the relation: Sum_{k=0..2*d} c(d, 2*d-k)*a(n+k) = (-1)^d * Sum_{k=0..n} Sum_{i=0..k} binomial(n-k, d+i)*binomial(n-k, i)*binomial(n-i, k-i). - Thomas Baruchel, Jan 26 2015

Examples

			Log(A(x)) = 2*x + 6*x^2/2 + 20*x^3/3 + ... + A108627(n)*x^n/n + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/Sqrt(1-4*x+2*x^2+x^4) )); // G. C. Greubel, Oct 06 2023
    
  • Maple
    a := n -> add(binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 1), k=0..n):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 13 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[x^4+2*x^2-4*x+1], {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
  • PARI
    a(n)=sum(k=0,n,sum(i=0,k,binomial(n-k,i)^2*binomial(n-i,k-i)))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(m+1)) , n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • SageMath
    def A108626_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/sqrt(1-4*x+2*x^2+x^4) ).list()
    A108626_list(40) # G. C. Greubel, Oct 06 2023

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f.: 1 / sqrt(x^4 + 2*x^2 - 4*x + 1). - Thomas Baruchel, Nov 08 2014
G.f.: A(x) = exp( Sum_{n>=1} A108627(n)*x^n/n ), where A108627 has g.f.: 2*x*(1 - x - x^3)/((1-x)*(1 - 3*x - x^2 - x^3)).
a(n) = ( (5*n-3)*a(n-1) - (6*n-8)*a(n-2) + (2*n-4)*a(n-3) - (n-2)*a(n-4) + (n-3)*a(n-5) ) / n. - Thomas Baruchel, Nov 08 2014
a(n+2) - 2*a(n+1) - a(n) = 2*Sum_{k=0..n} Sum_{i=0..k} binomial(n-k+1,i-1)*binomial(n-k+1,i)*binomial(n-i+1,k-i) = Sum_{k=0..n} a(k)*A086581(n-k+1). - Thomas Baruchel, Nov 08 2014
G.f.: Sum_{n>=0} (2*n)!/n!^2 * x^(2*n) / ((1-x)*(1-2*x)^(3*n+1)). - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=0} x^n/(1-x)^(n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
Partial sums of A171155: a(n) = Sum_{i=0..n} A171155(n). - Thomas Baruchel, Nov 08 2014
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-1)*a(n-2) - (n-2)*a(n-4). - Vaclav Kotesovec, Dec 20 2015
a(n) = Sum_{k=0..n} binomial(n,k)*hypergeometric3F2([-k,k-n,k-n], [1,-n], 1). - Peter Luschny, Feb 13 2018

A376466 a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)^2*A108625(n-1, k).

Original entry on oeis.org

1, 3, 127, 9435, 866751, 89591753, 9988439203, 1173951006987, 143456999185855, 18063466831218981, 2329136571942011877, 306174745758226208537, 40896708938016175140963, 5536767359542664588001285, 758259747093486125157272779, 104880152366856305370319427435, 14632959744552362547801104612799
Offset: 0

Views

Author

Peter Bala, Sep 25 2024

Keywords

Comments

Cf. A005258(n) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(n+k, k)^2.
The sequence of Apéry numbers A005258 satisfies the pair of supercongruences
1) A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r
and
2) A005258(n*p^r - 1) == A005258(n*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies the same pair of supercongruences. Some examples are given below.

Crossrefs

Programs

  • Maple
    A108625(n, k) := add( binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
    a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)^2*A108625(n-1, k), k = 0..n):
    seq(a(n), n = 0..25);

Formula

Examples of supercongruences:
a(11) - a(1) = 306174745758226208537 - 3 = 2*(11^3)*17*79367*85245689663 == 0 (mod 11^3).
a(10) - a(0) = 2329136571942011877 - 1 = (2^2)*(11^3)*17011*25717400209 == 0 (mod 11^3).

A363867 a(n) = A108625(n,2*n).

Original entry on oeis.org

1, 5, 61, 923, 15421, 272755, 5006275, 94307855, 1811113021, 35301145037, 696227550811, 13863654392945, 278264498108611, 5622746346645953, 114268249446672151, 2333733620675302423, 47868774493665731645, 985608360056821004233, 20362035153323824192645
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(n,2*n,n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363868 (r = 3, s = 1), A363869 (r = 3, s = 2), A363870 (r = 1, s = 3) and A363871 (r = 2, s = 3).

Crossrefs

Programs

  • Magma
    A363867:= func< n | (&+[Binomial(n,j)^2*Binomial(2*n+j,n): j in [0..n]]) >;
    [A363867(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(n, 2*n)), n = 0..18);
  • Mathematica
    Table[HypergeometricPFQ[{-n,-2*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363867(n): return sum(binomial(n,j)^2*binomial(2*n+j,n) for j in range(n+1))
    [A363867(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(2*n+k, n).
a(n) = Sum_{k = 0..n} (-1)^(n+k)* binomial(n, k)*binomial(2*n+k, n)^2.
a(n) = hypergeom( [-n, -2*n, n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(n, (1 + x)/(1 - x)).
P-recursive: 4*(2*n - 1)^2*n^2*(85*n^2 - 235*n + 163)*a(n) = (29665*n^6 - 141345*n^5 + 264772*n^4 - 249181*n^3 + 124975*n^2 - 31902*n + 3276)*a(n-1) + 4*(2*n - 3)^2*(n-1)^2*(85*n^2 - 65*n + 13)*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*binomial(2*n, k). - Peter Bala, Feb 25 2024
a(n) ~ sqrt(13 + 53/sqrt(17)) * (349 + 85*sqrt(17))^n / (Pi * n * 2^(5*n + 5/2)). - Vaclav Kotesovec, Apr 26 2024

A363868 a(n) = A108625(3*n, n).

Original entry on oeis.org

1, 13, 505, 24691, 1337961, 76869013, 4586370139, 280973874215, 17552736006121, 1113134497824901, 71437216036404505, 4629194489296980715, 302391678415222922475, 19886936616891022422159, 1315438146193644502479255, 87445220568000089973356191, 5838332204000163260729138153
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(3*n, n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363869 (r = 3, s = 2), A363870 (r = 1, s = 3) and A363871(r = 2, s = 3).

Crossrefs

Programs

  • Magma
    A363868:= func< n | (&+[Binomial(3*n,n-j)^2*Binomial(3*n+j,j): j in [0..n]]) >;
    [A363868(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(3*n, n)), n = 0..16);
  • Mathematica
    Table[HypergeometricPFQ[{-3*n,-n,3*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363868(n): return sum(binomial(3*n,n-j)^2*binomial(3*n+j, j) for j in range(n+1))
    [A363868(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..n} binomial(3*n, n-k)^2 * binomial(3*n+k, k).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(3*n, n-k) * binomial(3*n+k, k)^2.
a(n) = hypergeometric3F2( [-3*n, -n, 3*n+1], [1, 1], 1).
a(n) = [x^n] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
P-recursive: 3*(4797*n^4 - 26076*n^3 + 53055*n^2 - 47886*n + 16178)*(3*n - 1)^2*(3*n - 2)^2*n^2*a(n) = (82935333*n^10 - 699633963*n^9 + 2570641767*n^8 - 5402404662*n^7 + 7171181427*n^6 - 6264762171*n^5 + 3637752517*n^4 - 1382756780*n^3 + 328531700*n^2 - 44004160*n + 2529600)*a(n-1) + 3*(4797*n^4 - 6888*n^3 + 3609*n^2 - 816*n + 68)*(n - 1)^2*(3*n - 4)^2*(3*n - 5)^2*a(n-2) with a(0) = 1 and a(1) = 13.
a(n) ~ sqrt(17 + 61/sqrt(13)) * ((1921 + 533*sqrt(13))/54)^n / (6*Pi*sqrt(2)*n). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..n} binomial(n, k) * binomial(3*n, k) * binomial(3*n+k, k). - Peter Bala, Feb 26 2024

A363869 a(n) = A108625(3*n, 2*n).

Original entry on oeis.org

1, 55, 12559, 3685123, 1205189519, 418856591055, 151353475289275, 56193989426243199, 21283943385478109071, 8185785098679048061837, 3186604888590691870779559, 1252744279186835597251089055, 496508748101370063304243706939, 198134918989716743103591120933103
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(3*n, 2*n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363870 (r = 1, s = 3) and A363871 (r = 2, s = 3).

Crossrefs

Programs

  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(3*n, 2*n)), n = 0..20);
  • Mathematica
    A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1];
    Array[A363869, 20, 0] (* Paolo Xausa, Feb 26 2024 *)

Formula

a(n) = Sum_{k = 0..2*n} binomial(3*n, k)^2 * binomial(5*n-k, 3*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(3*n, k)*binomial(5*n-k, 3*n)^2.
a(n) = hypergeom( [-2*n, -3*n, 3*n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
a(n) ~ 2^(4*n) * 3^(3*n) / (sqrt(5)*Pi*n). - Vaclav Kotesovec, Apr 27 2024

A363870 a(n) = A108625(n, 3*n).

Original entry on oeis.org

1, 7, 127, 2869, 71631, 1894007, 51978529, 1464209383, 42050906191, 1225778575021, 36156060825127, 1076772406867549, 32324178587781393, 976893529756053501, 29693248490460447747, 907027175886637081619, 27826656707376811715663, 856949305975908664414097
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(n, 3*n, n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363869 (r = 3, s = 2) and A363871 (r = 2, s = 3).

Crossrefs

Programs

  • Magma
    A363870:= func< n | (&+[Binomial(n,j)^2*Binomial(3*n+j,n): j in [0..n]]) >;
    [A363870(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(n, 3*n)), n = 0..20);
  • Mathematica
    Table[HypergeometricPFQ[{-n,-3*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363870(n): return sum(binomial(n,j)^2*binomial(3*n+j,n) for j in range(n+1))
    [A363870(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*n+k, n).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(3*n+k, n)^2.
a(n) = hypergeometric3F2( [-n, -3*n, n+1], [1, 1], 1).
a(n) = [x^(3*n)] 1/(1 - x)*Legendre_P(n, (1 + x)/(1 - x)).
a(n) ~ sqrt(25 + 151/sqrt(37)) * (11906 + 1961*sqrt(37))^n / (Pi * 2^(3/2) * n * 3^(6*n+1)). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*binomial(3*n, k). - Peter Bala, Feb 25 2024

A364243 a(n) = A108625(2*n-1, n-1) for n >= 1.

Original entry on oeis.org

1, 13, 271, 6637, 176251, 4914427, 141573251, 4174790893, 125288929171, 3811804637263, 117248436333601, 3638993432201563, 113790712076898871, 3580847269415337487, 113299135244467189771, 3601766951734150461677, 114973519461796962202051
Offset: 1

Views

Author

Peter Bala, Jul 16 2023

Keywords

Comments

The sequence of Apéry numbers A005258 forms the main diagonal of A108625, i.e., A005258(n) = A108625(n, n). The Apéry numbers satisfy the supercongruences A005258(n*p^r) == A005258(n^p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
More generally, for positive integers r and s, the sequence defined by a(r,s;n) = A108625(r*n - 1, s*n - 1) may also satisfy the same supercongruences. This is the case r = 2, s = 1. Compare with the comments in A363867.

Crossrefs

Programs

  • Maple
    seq(add(binomial(2*n-1,k)^2 * binomial(3*n-2-k,2*n-1), k = 0..n-1), n = 1..20);
    # alternative program
    seq( simplify(binomial(2*n-1,n-1)^2 * hypergeom([1 - n, 1 - n, 2*n], [1 + n, 1 + n], 1)), n = 1..20);
  • Mathematica
    Table[Binomial[2*n-1, n-1]^2 * HypergeometricPFQ[{1 - n, 1 - n, 2*n}, {1 + n, 1 + n}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 16 2023 *)

Formula

a(n) = Sum_{k = 0..n-1} binomial(2*n-1,k)^2 * binomial(3*n-2-k,2*n-1) for n >= 1.
a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(2*n-1,k) * binomial(3*n-2-k,2*n-1)^2 for n >= 1.
a(n) = binomial(2*n-1,n-1)^2 * hypergeom([1 - n, 1 - n, 2*n], [1 + n, 1 + n], 1).
a(n) = (-1)^(n+1) * binomial(2*n-1,n-1) * hypergeom([1 - n, 2*n, 2*n], [1, 1 + n], 1).
P-recursive: (n-1)^2*(2*n-1)^2*(48*n^2-162*n+137)*a(n) = (6528*n^6-48144*n^5+144800*n^4-226714*n^3+194349*n^2-86299*n+15515)*a(n-1) - (2*n-3)^2*(n-2)^2*(48*n^2-66*n+23)*a(n-2) with a(1) = 1 and a(2) = 13.
a(n) ~ (1 + sqrt(2))^(4*n - 3/2) / (2^(9/4)*Pi*n). - Vaclav Kotesovec, Jul 16 2023

A376459 a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k).

Original entry on oeis.org

1, -1, -17, 143, 751, -20251, 30871, 2584847, -21586193, -251907751, 5176221733, 5498864117, -913327142441, 5540080670669, 120825094592983, -1860921180719857, -8346832617144593, 401702184476719649, -1403893237226212151, -64680833271083055607, 743195619082337134501, 6754996433001423371159, -192371016736634220839987, 139058974519768723621493, 36163089652079749214625751, -298797649039016749340832751
Offset: 0

Views

Author

Peter Bala, Sep 24 2024

Keywords

Comments

Compare with the following identity relating the sequence of Apéry numbers to the table of crystal ball sequences for the A_n lattices: A005259(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k), which can be verified by using the MulZeil procedure in Zeilberger's MultiZeilberger Maple package to find a recurrence for the double sum on the right-hand side of the identity.
The sequence of Apéry numbers A005259 satisfies the pair of supercongruences
1) A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r
and
2) A005259(n*p^r - 1) == A005259(n*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.
We conjecture that the present sequence satisfies the same pair of supercongruences. Some examples are given below.

Examples

			Examples of supercongruences:
(1a) a(11) - a(1) = 5498864117 - (-1) = 2*(3^3)*(11^3)*76507 == 0 (mod 11^3);
(1b) a(10) - a(0) = 5176221733 - 1 = (2^2)*(3^5)*(11^3)*4001 == 0 (mod 11^3).
(2a) a(5^2) - a(5) = -298797649039016749340832751 - (-20251) = -(2^2)*3*(5^6)*(11^2)*47*89*1683049*1870707593 == 0 (mod 5^6);
(2b) a(5^2 - 1) - a(5 - 1) = 36163089652079749214625751 - 751 = (2^3)*3*(5^6)*7*11*17*101*729412564491671 == 0 (mod 5^6).
		

Crossrefs

Programs

  • Maple
    A108625(n, k) := add(binomial(n, i)^2 * binomial(n+k-i, k-i), i = 0..k):
    a(n) := add((-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, n-k), k = 0..n):
    seq(a(n), n = 0..25);

Formula

P-recursive: n^3*(n - 1)*(946*n^2 - 3053*n + 2475)*a(n) = -2*(n - 1)*(3784*n^5 - 17888*n^4 + 31787*n^3 - 26726*n^2 + 11051*n - 1824)*a(n-1) - 2*(104060*n^6 - 752070*n^5 + 2212238*n^4 - 3374927*n^3 + 2802671*n^2 - 1196821*n + 205920)*a(n-2) - 2*(n - 2)^3*(2*n - 3)*(946*n^2 - 1161*n + 368)*a(n-3) with a(0) = 1, a(1) = -1 and a(2) = -17.
Showing 1-10 of 54 results. Next