cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A108625 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the A_n lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 13, 19, 7, 1, 1, 21, 55, 37, 9, 1, 1, 31, 131, 147, 61, 11, 1, 1, 43, 271, 471, 309, 91, 13, 1, 1, 57, 505, 1281, 1251, 561, 127, 15, 1, 1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1, 1, 91, 1405, 6637, 12559, 11253, 5321, 1415, 217, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 12 2005

Keywords

Comments

Compare to the corresponding array A108553 of crystal ball sequences for D_n lattice.
From Peter Bala, Jul 18 2008: (Start)
Row reverse of A099608.
This array has a remarkable relationship with the constant zeta(2). The row, column and diagonal entries of the array occur in series acceleration formulas for zeta(2).
For the entries in row n we have zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k)). For example, n = 4 gives zeta(2) = 2*(1 - 1/4 + 1/9 - 1/16) + 1/(1*21) + 1/(4*21*131) + 1/(9*131*471) + ... . See A142995 for further details.
For the entries in column k we have zeta(2) = (1 + 1/4 + 1/9 + ... + 1/k^2) + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k)). For example, k = 4 gives zeta(2) = (1 + 1/4 + 1/9 + 1/16) + 2*(1/(1*9) - 1/(4*9*61) + 1/(9*61*309) - ... ). See A142999 for further details.
Also, as consequence of Apery's proof of the irrationality of zeta(2), we have a series acceleration formula along the main diagonal of the table: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n,n)*T(n-1,n-1)) = 5*(1/3 - 1/(2^2*3*19) + 1/(3^2*19*147) - ...).
There also appear to be series acceleration results along other diagonals. For example, for the main subdiagonal, calculation supports the result zeta(2) = 2 - Sum_{n >= 1} (-1)^(n+1)*(n^2+(2*n+1)^2)/(n^2*(n+1)^2*T(n,n-1)*T(n+1,n)) = 2 - 10/(2^2*7) + 29/(6^2*7*55) - 58/(12^2*55*471) + ..., while for the main superdiagonal we appear to have zeta(2) = 1 + Sum_{n >= 1} (-1)^(n+1)*((n+1)^2 + (2*n+1)^2)/(n^2*(n+1)^2*T(n-1,n)*T(n,n+1)) = 1 + 13/(2^2*5) - 34/(6^2*5*37) + 65/(12^2*37*309) - ... .
Similar series acceleration results hold for Apery's constant zeta(3) involving the crystal ball sequences for the product lattices A_n x A_n; see A143007 for further details. Similar results also hold between the constant log(2) and the crystal ball sequences of the hypercubic lattices A_1 x...x A_1 and between log(2) and the crystal ball sequences for lattices of type C_n ; see A008288 and A142992 respectively for further details. (End)
This array is the Hilbert transform of triangle A008459 (see A145905 for the definition of the Hilbert transform). - Peter Bala, Oct 28 2008

Examples

			Square array begins:
  1,   1,    1,     1,      1,       1,       1, ... A000012;
  1,   3,    5,     7,      9,      11,      13, ... A005408;
  1,   7,   19,    37,     61,      91,     127, ... A003215;
  1,  13,   55,   147,    309,     561,     923, ... A005902;
  1,  21,  131,   471,   1251,    2751,    5321, ... A008384;
  1,  31,  271,  1281,   4251,   11253,   25493, ... A008386;
  1,  43,  505,  3067,  12559,   39733,  104959, ... A008388;
  1,  57,  869,  6637,  33111,  124223,  380731, ... A008390;
  1,  73, 1405, 13237,  79459,  350683, 1240399, ... A008392;
  1,  91, 2161, 24691, 176251,  907753, 3685123, ... A008394;
  1, 111, 3191, 43561, 365751, 2181257, ...      ... A008396;
  ...
As a triangle:
  [0]  1
  [1]  1,  1
  [2]  1,  3,   1
  [3]  1,  7,   5,    1
  [4]  1, 13,  19,    7,    1
  [5]  1, 21,  55,   37,    9,    1
  [6]  1, 31, 131,  147,   61,   11,   1
  [7]  1, 43, 271,  471,  309,   91,  13,   1
  [8]  1, 57, 505, 1281, 1251,  561, 127,  15,  1
  [9]  1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1
       ...
Inverse binomial transform of rows yield rows of triangle A063007:
  1;
  1,  2;
  1,  6,   6;
  1, 12,  30,  20;
  1, 20,  90, 140,  70;
  1, 30, 210, 560, 630, 252; ...
Product of the g.f. of row n and (1-x)^(n+1) generates the symmetric triangle A008459:
  1;
  1,  1;
  1,  4,   1;
  1,  9,   9,   1;
  1, 16,  36,  16,  1;
  1, 25, 100, 100, 25, 1;
  ...
		

Crossrefs

Rows include: A003215 (row 2), A005902 (row 3), A008384 (row 4), A008386 (row 5), A008388 (row 6), A008390 (row 7), A008392 (row 8), A008394 (row 9), A008396 (row 10).
Cf. A063007, A099601 (n-th term of A_{2n} lattice), A108553.
Cf. A008459 (h-vectors type B associahedra), A145904, A145905.
Cf. A005258 (main diagonal), A108626 (antidiagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n,j)^2*Binomial(n+k-j,k-j): j in [0..k]]) >; // array
    A108625:= func< n,k | T(n-k,k) >; // antidiagonals
    [A108625(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    T := (n,k) -> binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Feb 10 2018
  • Mathematica
    T[n_, k_]:= HypergeometricPFQ[{-n, -k, n+1}, {1, 1}, 1] (* Michael Somos, Jun 03 2012 *)
  • PARI
    T(n,k)=sum(i=0,k,binomial(n,i)^2*binomial(n+k-i,k-i))
    
  • SageMath
    def T(n,k): return sum(binomial(n,j)^2*binomial(n+k-j, k-j) for j in range(k+1)) # array
    def A108625(n,k): return T(n-k, k) # antidiagonals
    flatten([[A108625(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, k) = Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f. for row n: (Sum_{i=0..n} C(n, i)^2 * x^i)/(1-x)^(n+1).
Sum_{k=0..n} T(n-k, k) = A108626(n) (antidiagonal sums).
From Peter Bala, Jul 23 2008 (Start):
O.g.f. row n: 1/(1 - x)*Legendre_P(n,(1 + x)/(1 - x)).
G.f. for square array: 1/sqrt((1 - x)*((1 - t)^2 - x*(1 + t)^2)) = (1 + x + x^2 + x^3 + ...) + (1 + 3*x + 5*x^2 + 7*x^3 + ...)*t + (1 + 7*x + 19*x^2 + 37*x^3 + ...)*t^2 + ... . Cf. A142977.
Main diagonal is A005258.
Recurrence relations:
Row n entries: (k+1)^2*T(n,k+1) = (2*k^2+2*k+n^2+n+1)*T(n,k) - k^2*T(n,k-1), k = 1,2,3,... ;
Column k entries: (n+1)^2*T(n+1,k) = (2*k+1)*(2*n+1)*T(n,k) + n^2*T(n-1,k), n = 1,2,3,... ;
Main diagonal entries: (n+1)^2*T(n+1,n+1) = (11*n^2+11*n+3)*T(n,n) + n^2*T(n-1,n-1), n = 1,2,3,... .
Series acceleration formulas for zeta(2):
Row n: zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k));
Column k: zeta(2) = 1 + 1/2^2 + 1/3^2 + ... + 1/k^2 + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k));
Main diagonal: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,n-1)*T(n,n)).
Conjectural result for superdiagonals: zeta(2) = 1 + 1/2^2 + ... + 1/k^2 + Sum_{n >= 1} (-1)^(n+1) * (5*n^2 + 6*k*n + 2*k^2)/(n^2*(n+k)^2*T(n-1,n+k-1)*T(n,n+k)), k = 0,1,2... .
Conjectural result for subdiagonals: zeta(2) = 2*(1 - 1/2^2 + ... + (-1)^(k+1)/k^2) + (-1)^k*Sum_{n >= 1} (-1)^(n+1)*(5*n^2 + 4*k*n + k^2)/(n^2*(n+k)^2*T(n+k-1,n-1)*T(n+k,n)), k = 0,1,2... .
Conjectural congruences: the main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) = S(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers m and r. If p is prime of the form 4*n + 1 we can write p = a^2 + b^2 with a an odd number. Then calculation suggests the congruence S((p-1)/2) == 2*a^2 (mod p). (End)
From Michael Somos, Jun 03 2012: (Start)
T(n, k) = hypergeom([-n, -k, n + 1], [1, 1], 1).
T(n, n-1) = A208675(n).
T(n+1, n) = A108628(n). (End)
T(n, k) = binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1). - Peter Luschny, Feb 10 2018
From Peter Bala, Jun 23 2023: (Start)
T(n, k) = Sum_{i = 0..k} (-1)^i * binomial(n, i)*binomial(n+k-i, k-i)^2.
T(n, k) = binomial(n+k, k)^2 * hypergeom([-n, -k, -k], [-n - k, -n - k], 1). (End)
From Peter Bala, Jun 28 2023; (Start)
T(n,k) = the coefficient of (x^n)*(y^k)*(z^n) in the expansion of 1/( (1 - x - y)*(1 - z ) - x*y*z ).
T(n,k) = B(n, k, n) in the notation of Straub, equation 24.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, -k], [1, 1], 1) allows the table indexing to be extended to negative values of n and k; clearly, we find that T(-n,k) = T(n-1,k) for all n and k. It appears that T(n,-k) = (-1)^n*T(n,k-1) for n >= 0, while T(n,-k) = (-1)^(n+1)*T(n,k-1) for n <= -1 [added Sep 10 2023: these follow from the identities immediately below]. (End)
T(n,k) = Sum_{i = 0..n} (-1)^(n+i) * binomial(n, i)*binomial(n+i, i)*binomial(k+i, i) = (-1)^n * hypergeom([n + 1, -n, k + 1], [1, 1], 1). - Peter Bala, Sep 10 2023
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n,k) = T(n-k, k) (antidiagonals).
t(n, k) = Hypergeometric3F2([k-n, -k, n-k+1], [1,1], 1).
T(n, 2*n) = A363867(n).
T(3*n, n) = A363868(n).
T(2*n, 2*n) = A363869(n).
T(n, 3*n) = A363870(n).
T(2*n, 3*n) = A363871(n). (End)
T(n, k) = Sum_{i = 0..n} binomial(n, i)*binomial(n+i, i)*binomial(k, i). - Peter Bala, Feb 26 2024
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n, k) = A005259(n), the Apéry numbers associated with zeta(3). - Peter Bala, Jul 18 2024
From Peter Bala, Sep 21 2024: (Start)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*T(n, k) = binomial(2*n, n) = A000984(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n-1, n-k) = A376458(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(i, k) = A143007(n, i). (End)
From Peter Bala, Oct 12 2024: (Start)
The square array = A063007 * transpose(A007318).
Conjecture: for positive integer m, Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * T(m*n, k) = ((m+1)*n)!/( ((m-1)*n)!*n!^2) (verified up to m = 10 using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). (End)

A363871 a(n) = A108625(2*n, 3*n).

Original entry on oeis.org

1, 37, 5321, 980407, 201186025, 43859522037, 9939874413899, 2314357836947571, 549694303511409641, 132569070434503802605, 32360243622138480889321, 7977001183875449759759807, 1982402220908671654519130731, 496031095735572731850517509727
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(2*n, 3*n, 2*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363869 (r = 3, s = 2) and A363870 (r = 1, s = 3).

Crossrefs

Programs

  • Magma
    A363871:= func< n | (&+[Binomial(2*n,j)^2*Binomial(5*n-j,2*n): j in [0..2*n]]) >;
    [A363871(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(2*n, 3*n)), n = 0..20);
  • Mathematica
    Table[HypergeometricPFQ[{-2*n,-3*n,2*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363871(n): return sum(binomial(2*n,j)^2*binomial(5*n-j,2*n) for j in range(2*n+1))
    [A363871(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..2*n} binomial(2*n, k)^2 * binomial(5*n-k, 2*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(2*n, k)*binomial(5*n-k, 2*n)^2.
a(n) = hypergeometric3F2([-2*n, -3*n, 2*n+1], [1, 1], 1).
a(n) = [x^(3*n)] 1/(1 - x)*Legendre_P(2*n, (1 + x)/(1 - x)).
a(n) ~ sqrt(1700 + 530*sqrt(10)) * (98729 + 31220*sqrt(10))^n / (120 * Pi * n * 3^(6*n)). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..2*n} binomial(2*n, k) * binomial(3*n, k) * binomial(2*n+k, k). - Peter Bala, Feb 26 2024

A363868 a(n) = A108625(3*n, n).

Original entry on oeis.org

1, 13, 505, 24691, 1337961, 76869013, 4586370139, 280973874215, 17552736006121, 1113134497824901, 71437216036404505, 4629194489296980715, 302391678415222922475, 19886936616891022422159, 1315438146193644502479255, 87445220568000089973356191, 5838332204000163260729138153
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(3*n, n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363869 (r = 3, s = 2), A363870 (r = 1, s = 3) and A363871(r = 2, s = 3).

Crossrefs

Programs

  • Magma
    A363868:= func< n | (&+[Binomial(3*n,n-j)^2*Binomial(3*n+j,j): j in [0..n]]) >;
    [A363868(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(3*n, n)), n = 0..16);
  • Mathematica
    Table[HypergeometricPFQ[{-3*n,-n,3*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363868(n): return sum(binomial(3*n,n-j)^2*binomial(3*n+j, j) for j in range(n+1))
    [A363868(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..n} binomial(3*n, n-k)^2 * binomial(3*n+k, k).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(3*n, n-k) * binomial(3*n+k, k)^2.
a(n) = hypergeometric3F2( [-3*n, -n, 3*n+1], [1, 1], 1).
a(n) = [x^n] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
P-recursive: 3*(4797*n^4 - 26076*n^3 + 53055*n^2 - 47886*n + 16178)*(3*n - 1)^2*(3*n - 2)^2*n^2*a(n) = (82935333*n^10 - 699633963*n^9 + 2570641767*n^8 - 5402404662*n^7 + 7171181427*n^6 - 6264762171*n^5 + 3637752517*n^4 - 1382756780*n^3 + 328531700*n^2 - 44004160*n + 2529600)*a(n-1) + 3*(4797*n^4 - 6888*n^3 + 3609*n^2 - 816*n + 68)*(n - 1)^2*(3*n - 4)^2*(3*n - 5)^2*a(n-2) with a(0) = 1 and a(1) = 13.
a(n) ~ sqrt(17 + 61/sqrt(13)) * ((1921 + 533*sqrt(13))/54)^n / (6*Pi*sqrt(2)*n). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..n} binomial(n, k) * binomial(3*n, k) * binomial(3*n+k, k). - Peter Bala, Feb 26 2024

A363869 a(n) = A108625(3*n, 2*n).

Original entry on oeis.org

1, 55, 12559, 3685123, 1205189519, 418856591055, 151353475289275, 56193989426243199, 21283943385478109071, 8185785098679048061837, 3186604888590691870779559, 1252744279186835597251089055, 496508748101370063304243706939, 198134918989716743103591120933103
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(3*n, 2*n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363870 (r = 1, s = 3) and A363871 (r = 2, s = 3).

Crossrefs

Programs

  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(3*n, 2*n)), n = 0..20);
  • Mathematica
    A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1];
    Array[A363869, 20, 0] (* Paolo Xausa, Feb 26 2024 *)

Formula

a(n) = Sum_{k = 0..2*n} binomial(3*n, k)^2 * binomial(5*n-k, 3*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(3*n, k)*binomial(5*n-k, 3*n)^2.
a(n) = hypergeom( [-2*n, -3*n, 3*n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
a(n) ~ 2^(4*n) * 3^(3*n) / (sqrt(5)*Pi*n). - Vaclav Kotesovec, Apr 27 2024

A363870 a(n) = A108625(n, 3*n).

Original entry on oeis.org

1, 7, 127, 2869, 71631, 1894007, 51978529, 1464209383, 42050906191, 1225778575021, 36156060825127, 1076772406867549, 32324178587781393, 976893529756053501, 29693248490460447747, 907027175886637081619, 27826656707376811715663, 856949305975908664414097
Offset: 0

Views

Author

Peter Bala, Jun 27 2023

Keywords

Comments

a(n) = B(n, 3*n, n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363869 (r = 3, s = 2) and A363871 (r = 2, s = 3).

Crossrefs

Programs

  • Magma
    A363870:= func< n | (&+[Binomial(n,j)^2*Binomial(3*n+j,n): j in [0..n]]) >;
    [A363870(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1):
    seq(simplify(A108625(n, 3*n)), n = 0..20);
  • Mathematica
    Table[HypergeometricPFQ[{-n,-3*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A363870(n): return sum(binomial(n,j)^2*binomial(3*n+j,n) for j in range(n+1))
    [A363870(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*n+k, n).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(3*n+k, n)^2.
a(n) = hypergeometric3F2( [-n, -3*n, n+1], [1, 1], 1).
a(n) = [x^(3*n)] 1/(1 - x)*Legendre_P(n, (1 + x)/(1 - x)).
a(n) ~ sqrt(25 + 151/sqrt(37)) * (11906 + 1961*sqrt(37))^n / (Pi * 2^(3/2) * n * 3^(6*n+1)). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*binomial(3*n, k). - Peter Bala, Feb 25 2024

A364243 a(n) = A108625(2*n-1, n-1) for n >= 1.

Original entry on oeis.org

1, 13, 271, 6637, 176251, 4914427, 141573251, 4174790893, 125288929171, 3811804637263, 117248436333601, 3638993432201563, 113790712076898871, 3580847269415337487, 113299135244467189771, 3601766951734150461677, 114973519461796962202051
Offset: 1

Views

Author

Peter Bala, Jul 16 2023

Keywords

Comments

The sequence of Apéry numbers A005258 forms the main diagonal of A108625, i.e., A005258(n) = A108625(n, n). The Apéry numbers satisfy the supercongruences A005258(n*p^r) == A005258(n^p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
More generally, for positive integers r and s, the sequence defined by a(r,s;n) = A108625(r*n - 1, s*n - 1) may also satisfy the same supercongruences. This is the case r = 2, s = 1. Compare with the comments in A363867.

Crossrefs

Programs

  • Maple
    seq(add(binomial(2*n-1,k)^2 * binomial(3*n-2-k,2*n-1), k = 0..n-1), n = 1..20);
    # alternative program
    seq( simplify(binomial(2*n-1,n-1)^2 * hypergeom([1 - n, 1 - n, 2*n], [1 + n, 1 + n], 1)), n = 1..20);
  • Mathematica
    Table[Binomial[2*n-1, n-1]^2 * HypergeometricPFQ[{1 - n, 1 - n, 2*n}, {1 + n, 1 + n}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 16 2023 *)

Formula

a(n) = Sum_{k = 0..n-1} binomial(2*n-1,k)^2 * binomial(3*n-2-k,2*n-1) for n >= 1.
a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(2*n-1,k) * binomial(3*n-2-k,2*n-1)^2 for n >= 1.
a(n) = binomial(2*n-1,n-1)^2 * hypergeom([1 - n, 1 - n, 2*n], [1 + n, 1 + n], 1).
a(n) = (-1)^(n+1) * binomial(2*n-1,n-1) * hypergeom([1 - n, 2*n, 2*n], [1, 1 + n], 1).
P-recursive: (n-1)^2*(2*n-1)^2*(48*n^2-162*n+137)*a(n) = (6528*n^6-48144*n^5+144800*n^4-226714*n^3+194349*n^2-86299*n+15515)*a(n-1) - (2*n-3)^2*(n-2)^2*(48*n^2-66*n+23)*a(n-2) with a(1) = 1 and a(2) = 13.
a(n) ~ (1 + sqrt(2))^(4*n - 3/2) / (2^(9/4)*Pi*n). - Vaclav Kotesovec, Jul 16 2023
Showing 1-6 of 6 results.