A145905
Square array read by antidiagonals: Hilbert transform of triangle A060187.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
-
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
A142175
Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 36, 36, 1;
1, 133, 420, 133, 1;
1, 449, 3334, 3334, 449, 1;
1, 1446, 21939, 49364, 21939, 1446, 1;
1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
[A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
-
p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
-
A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 20 2018 */
-
# from sage.all import * # (use for Python)
from sage.combinat.combinat import eulerian_number
def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024
Original entry on oeis.org
1, 6, 23, 76, 237, 722, 2179, 6552, 19673, 59038, 177135, 531428, 1594309, 4782954, 14348891, 43046704, 129140145, 387420470, 1162261447, 3486784380, 10460353181, 31381059586, 94143178803, 282429536456, 847288609417
Offset: 2
- Vincenzo Librandi, Table of n, a(n) for n = 2..2000
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1920), 305-340; Coll. Papers II, pp. 267-302.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
-
[3^(n-1)-n: n in [2..30]]; // Vincenzo Librandi, Sep 05 2011
-
a[0]:=1:for n from 1 to 24 do a[n]:=(4*a[n-1]-3*a[n-2]+2) od: seq(a[n], n=0..24); # Zerinvary Lajos, Jun 08 2007
-
Table[3^(n-1) -n, {n,2,30}] (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
LinearRecurrence[{5,-7,3},{1,6,23},30] (* Harvey P. Dale, Jul 03 2024 *)
-
[3^(n-1) -n for n in (2..32)] # G. C. Greubel, Jan 07 2022
A176490
Triangle T(n,k) = A008292(n+1,k+1) + A060187(n+1,k+1)- 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 33, 33, 1, 1, 101, 295, 101, 1, 1, 293, 1983, 1983, 293, 1, 1, 841, 11733, 25963, 11733, 841, 1, 1, 2425, 64949, 275341, 275341, 64949, 2425, 1, 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1, 1, 20685, 1804179, 22163163
Offset: 0
1;
1, 1;
1, 9, 1;
1, 33, 33, 1;
1, 101, 295, 101, 1;
1, 293, 1983, 1983, 293, 1;
1, 841, 11733, 25963, 11733, 841, 1;
1, 2425, 64949, 275341, 275341, 64949, 2425, 1;
1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1;
1, 20685, 1804179, 22163163, 70723647, 70723647, 22163163, 1804179, 20685, 1;
1, 61073, 9268777, 180504391, 916661395, 1542816715, 916661395, 180504391, 9268777, 61073, 1;
-
A176490 := proc(n,k)
A008292(n+1,k+1)+A060187(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A177043
Central MacMahon numbers: a(n)=A060187(2*n+1, n+1).
Original entry on oeis.org
1, 6, 230, 23548, 4675014, 1527092468, 743288515164, 504541774904760, 455522635895576646, 527896878148304296900, 763820398700983273655796, 1349622683586635111555174216, 2859794140516672651686471055900, 7157996663278223282076538528360968
Offset: 0
-
a:= n-> add((-1)^(n-i) *binomial(2*n+1, n-i) *(2*i+1)^(2*n), i=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2011
# With the generating function of the generalized Eulerian polynomials:
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%),x) end: seq(coeff(gf(2*n,2),x,n),n=0..13); # Peter Luschny, May 02 2013
-
(*A060187*)
p[x_,n_]=(1-x)^(n+1)*Sum[(2*k+1)^n*x^k,{k,0,Infinity}];
f[n_,m_]:=CoefficientList[FullSimplify[ExpandAll[p[x,n]]],x][[m+1]];
a=Table[f[2*n,n],{n,0,20}]
A225356
Triangle T(n, k) = T(n, k-1) + (-1)^k*A060187(n+2,k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -22, 1, 1, -75, -75, 1, 1, -236, 1446, -236, 1, 1, -721, 9822, 9822, -721, 1, 1, -2178, 58479, -201244, 58479, -2178, 1, 1, -6551, 325061, -2160227, -2160227, 325061, -6551, 1, 1, -19672, 1736668, -19971304, 49441990, -19971304, 1736668, -19672, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, -22, 1;
1, -75, -75, 1;
1, -236, 1446, -236, 1;
1, -721, 9822, 9822, -721, 1;
1, -2178, 58479, -201244, 58479, -2178, 1;
1, -6551, 325061, -2160227, -2160227, 325061, -6551, 1;
1, -19672, 1736668, -19971304, 49441990, -19971304, 1736668, -19672, 1;
-
(* First program *)
q[x_, n_]= (1-x)^(n+1)*Sum[(2*m+1)^n*x^m, {m, 0, Infinity}];
t[n_, m_]:= t[n, m]= Table[CoefficientList[q[x, k], x], {k,0,15}][[n+1, m+1]];
p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i <= Floor[n/2], (-1)^i*t[n, i], (-1)^(n-i+1)*t[n, i]]], {i,0,n}]/(1-x);
Flatten[Table[CoefficientList[p[x, n], x], {n,10}]]
(* Second Program *)
A060187[n_, k_]:= Sum[(-1)^(k-i)*Binomial[n, k-i]*(2*i-1)^(n-1), {i,k}];
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] +(-1)^k*A060187[n+2, k+1], T[n, n-k] ]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2022 *)
-
def A060187(n,k): return sum( (-1)^(k-j)*(2*j-1)^(n-1)*binomial(n, k-j) for j in (1..k) )
@CachedFunction
def A225356(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A225356(n,k-1) + (-1)^k*A060187(n+2,k+1)
else: return A225356(n,n-k)
flatten([[A225356(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A060189
A column and diagonal of A060187 (k=3).
Original entry on oeis.org
1, 23, 230, 1682, 10543, 60657, 331612, 1756340, 9116141, 46702427, 237231970, 1198382694, 6031771195, 30287995733, 151856096504, 760614930344, 3807336276505, 19050241098975, 95294209168414, 476607030432890
Offset: 3
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1920), 305-340; Coll. Papers II, pp. 267-302.
- Index entries for linear recurrences with constant coefficients, signature (14,-75,196,-263,174,-45).
-
[5^(n-1) -n*3^(n-1) +n*(n-1)/2: n in [3..40]]; // G. C. Greubel, Jul 31 2024
-
Table[5^(n-1) -n*3^(n-1) +n*(n-1)/2, {n,3,40}] (* G. C. Greubel, Jul 31 2024 *)
-
[5^(n-1) -n*3^(n-1) +n*(n-1)//2 for n in range(3,41)] # G. C. Greubel, Jul 31 2024
A060190
A column and diagonal of A060187 (k=4).
Original entry on oeis.org
1, 76, 1682, 23548, 259723, 2485288, 21707972, 178300904, 1403080725, 10708911188, 79944249686, 587172549764, 4261002128223, 30644790782352, 218917362275080, 1556000598766224, 11017646288488233, 77790282457881756
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., (2) 19 (1921), 305-340; Coll. Papers II, pp. 267-302.
- Index entries for linear recurrences with constant coefficients, signature (30,-385,2776,-12418,35908,-67818,82552,-62109,26190,-4725).
-
[(&+[(-1)^k*Binomial(n,k)*(7-2*k)^(n-1): k in [0..3]]): n in [4..40]]; // G. C. Greubel, Aug 01 2024
-
r := proc(n, k) option remember;
if n = 0 then if k = 0 then 1 else 0 fi else
(2*(n-k)+1)*r(n-1, k-1) + (2*k+1)*r(n-1, k) fi end:
A060189 := n -> r(n-1, 3): seq(A060189(n), n = 4..21); # Peter Luschny, May 06 2013
-
r[n_, k_] := r[n, k] = If[n == 0, If[k == 0, 1, 0], (2*(n-k)+1)*r[n-1, k-1] + (2*k+1)*r[n-1, k]]; A060189[n_] := r[n-1, 3]; Table[A060189[n], {n, 4, 21}] (* Jean-François Alcover, Dec 03 2013, translated from Peter Luschny's program *)
A060190[n_]:= Sum[(-1)^k*Binomial[n,k]*(7-2*k)^(n-1), {k,0,3}];
Table[A060190[n], {n,4,40}] (* G. C. Greubel, Aug 01 2024 *)
-
[sum((-1)^k*binomial(n,k)*(7-2*k)^(n-1) for k in range(4)) for n in range(4,40)] # G. C. Greubel, Aug 01 2024
A143213
Triangle T(n,m) read by rows: Gray code of A060187(n, k) (decimal representation), 1 <= k <= n, n >= 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 28, 28, 1, 1, 106, 149, 106, 1, 1, 155, 987, 987, 155, 1, 1, 955, 440, 514, 440, 955, 1, 1, 194, 137, 974, 974, 137, 194, 1, 1, 340, 754, 60, 293, 60, 754, 340, 1, 1, 181, 238, 166, 377, 377, 166, 238, 181, 1, 1, 977, 283, 540, 411, 142, 411, 540, 283, 977, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 28, 28, 1;
1, 106, 149, 106, 1;
1, 155, 987, 987, 155, 1;
1, 955, 440, 514, 440, 955, 1;
1, 194, 137, 974, 974, 137, 194, 1;
1, 340, 754, 60, 293, 60, 754, 340, 1;
1, 181, 238, 166, 377, 377, 166, 238, 181, 1;
1, 977, 283, 540, 411, 142, 411, 540, 283, 977, 1;
-
GrayCode[n_, k_]:= FromDigits[BitXor@@@Partition[Prepend[IntegerDigits[n,2,k], 0], 2, 1], 2];
A060187[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n,k-j]*(2*j-1)^(n-1), {j,k}];
A143213[n_, k_]:= GrayCode[A060187[n, k], 10];
Table[A143213[n,k], {n,12}, {k,n}]//Flatten
A143506
Irregular triangle read by rows: first row is 1, and n-th row gives the coefficients of x^(n - 1)*R(n,x + 1/x)/(x + 1/x), where R(n,x) is the n-th row polynomial for A060187.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 3, 6, 1, 1, 23, 26, 47, 26, 23, 1, 1, 76, 234, 304, 467, 304, 234, 76, 1, 1, 237, 1687, 2630, 5293, 4787, 5293, 2630, 1687, 237, 1, 1, 722, 10549, 27158, 52730, 78586, 84365, 78586, 52730, 27158, 10549, 722, 1, 1, 2179, 60664, 272797, 563029, 1132234
Offset: 0
Triangle begins:
1;
1, 1, 1;
1, 6, 3, 6, 1;
1, 23, 26, 47, 26, 23, 1;
1, 76, 234, 304, 467, 304, 234, 76, 1;
1, 237, 1687, 2630, 5293, 4787, 5293, 2630, 1687, 237, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
-
Table[CoefficientList[FullSimplify[ExpandAll[2^n*(1 - x - 1/x)^(1 + n)*x^n*LerchPhi[x + 1/x, -n, 1/2]]], x], {n, 0, 10}]//Flatten
Showing 1-10 of 118 results.
Comments