cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176491 Triangle T(n,k) = binomial(n,k) + A176490(n,k) - 1 read along rows 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 35, 35, 1, 1, 104, 300, 104, 1, 1, 297, 1992, 1992, 297, 1, 1, 846, 11747, 25982, 11747, 846, 1, 1, 2431, 64969, 275375, 275375, 64969, 2431, 1, 1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1, 1, 20693, 1804214, 22163246
Offset: 0

Views

Author

Roger L. Bagula, Apr 19 2010

Keywords

Comments

Row sums are 1, 2, 12, 72, 510, 4580, 51170, 685552, 10685038, 189423852, 3755809002,....

Examples

			1;
1, 1;
1, 10, 1;
1, 35, 35, 1;
1, 104, 300, 104, 1;
1, 297, 1992, 1992, 297, 1;
1, 846, 11747, 25982, 11747, 846, 1;
1, 2431, 64969, 275375, 275375, 64969, 2431, 1;
1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1;
1, 20693, 1804214, 22163246, 70723772, 70723772, 22163246, 1804214, 20693, 1;
1, 61082, 9268821, 180504510, 916661604, 1542816966, 916661604, 180504510, 9268821, 61082, 1;
		

Crossrefs

Programs

  • Maple
    A176491 := proc(n,k)
            A176490(n,k)+binomial(n,k)-1 ;
    end proc: # R. J. Mathar, Jun 16 2015
  • Mathematica
    (*A060187*)
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    << DiscreteMath`Combinatorica`;
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Eulerian[1 + n, m];
    t[n_, m_, 2] := f[n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

A176560 A symmetrical triangle recursion:q=5;t(n,m,0)=Binomial[n,m];t(n,m,1)=Narayana(n,m);t(n,m,2)=Eulerian(n+1,m);t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 16, 16, 1, 1, 35, 85, 35, 1, 1, 71, 351, 351, 71, 1, 1, 140, 1295, 2590, 1295, 140, 1, 1, 274, 4488, 16108, 16108, 4488, 274, 1, 1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1, 1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2010

Keywords

Comments

Row sums are:
{1, 2, 8, 34, 157, 846, 5462, 41742, 367733, 3645586, 39975575,...}.

Examples

			{1},
{1, 1},
{1, 6, 1},
{1, 16, 16, 1},
{1, 35, 85, 35, 1},
{1, 71, 351, 351, 71, 1},
{1, 140, 1295, 2590, 1295, 140, 1},
{1, 274, 4488, 16108, 16108, 4488, 274, 1},
{1, 537, 14943, 89409, 157953, 89409, 14943, 537, 1},
{1, 1057, 48379, 457711, 1315645, 1315645, 457711, 48379, 1057, 1},
{1, 2090, 153461, 2208437, 9751973, 15743651, 9751973, 2208437, 153461, 2090, 1}
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
    t[n_, m_, 2] := Eulerian[1 + n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

Formula

q=5;
t(n,m,0)=Binomial[n,m];
t(n,m,1)=Narayana(n,m);
t(n,m,2)=Eulerian(n+1,m);
t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)

A176561 A symmetrical triangle recursion:q=6;t(n,m,0)=Binomial[n,m];t(n,m,1)=Narayana(n,m);t(n,m,2)=Eulerian(n+1,m);t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 18, 18, 1, 1, 38, 90, 38, 1, 1, 75, 360, 360, 75, 1, 1, 145, 1309, 2609, 1309, 145, 1, 1, 280, 4508, 16142, 16142, 4508, 280, 1, 1, 544, 14970, 89464, 158022, 89464, 14970, 544, 1, 1, 1065, 48414, 457794, 1315770, 1315770, 457794, 48414
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2010

Keywords

Comments

Row sums are:
{1, 2, 9, 38, 168, 872, 5519, 41862, 367980, 3646088, 39976588,...}.

Examples

			{1},
{1, 1},
{1, 7, 1},
{1, 18, 18, 1},
{1, 38, 90, 38, 1},
{1, 75, 360, 360, 75, 1},
{1, 145, 1309, 2609, 1309, 145, 1},
{1, 280, 4508, 16142, 16142, 4508, 280, 1},
{1, 544, 14970, 89464, 158022, 89464, 14970, 544, 1},
{1, 1065, 48414, 457794, 1315770, 1315770, 457794, 48414, 1065, 1},
{1, 2099, 153505, 2208556, 9752182, 15743902, 9752182, 2208556, 153505, 2099, 1}
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
    t[n_, m_, 2] := Eulerian[1 + n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

Formula

q=6;
t(n,m,0)=Binomial[n,m];
t(n,m,1)=Narayana(n,m);
t(n,m,2)=Eulerian(n+1,m);
t(n,m,q)=t(n,m,g-2)+t(n,m,q-3)
Showing 1-3 of 3 results.