A000295
Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).
Original entry on oeis.org
0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0
G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
- O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 17, 18.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Jean-Luc Baril and J. M. Pallo, The pruning-grafting lattice of binary trees, Theoretical Computer Science, 409, 2008, 382-393.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 7.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Maximilien Gadouleau, James D. Mitchell, and Yann Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015. See Table 4.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Shelby Cox, Pratik Misra, and Pardis Semnani, Homaloidal Polynomials and Gaussian Models of Maximum Likelihood Degree One, arXiv:2402.06090 [math.AG], 2024.
- Benjamin Hellouin de Menibus and Yvan Le Borgne, Asymptotic behaviour of the one-dimensional "rock-paper-scissors" cyclic cellular automaton, arXiv:1903.12622 [math.PR], 2019.
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- J. M. Dusel, Balanced parabolic quotients and branching rules for Demazure crystals, J Algebr Comb (2016) 44: 363. DOI: 10.1007/s10801-016-0673-y.
- Pascal Floquet, Serge Domenech and Luc Pibouleau, Combinatorics of Sharp Separation System synthesis : Generating functions and Search Efficiency Criterion, Industrial Engineering and Chemistry Research, 33, pp. 440-443, 1994.
- Pascal Floquet, Serge Domenech, Luc Pibouleau and Said Aly, Some Complements in Combinatorics of Sharp Separation System Synthesis, American Institute of Chemical Engineering Journal, 39(6), pp. 975-978, 1993.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- R. K. Guy, Letter to N. J. A. Sloane.
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, On Chip-Firing on Undirected Binary Trees, Ann. Comb. (2025). See pp. 24-25.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 388.
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- Lucas Kang, Investigation of Rule 73 as Case Study of Class 4 Long-Distance Cellular Automata, arXiv preprint arXiv:1310.3311 [nlin.CG], 2013.
- Oliver Kullmann and Xishun Zhao, Bounds for variables with few occurrences in conjunctive normal forms, arXiv preprint arXiv:1408.0629 [math.CO], 2014.
- César Eliud Lozada, Centroids of Pascal triangles
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Peter Charles Mendenhall and Hal M. Switkay, Consecutively Halved Positional Voting: A Special Case of Geometric Voting, Social Sciences vol. 12 no. 2 (2023), 47-59.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- J. W. Moon, A problem on arcs without bypasses in tournaments, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 71--75. MR0427129(55 #165).
- Agustín Moreno Cañadas, Hernán Giraldo, and Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, p 85-95, 2015.
- Emily Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- J. M. Pallo, Weak associativity and restricted rotation, Information Processing Letters, 109, 2009, 514-517.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- Markus Sigg, Collatz iteration and Euler numbers?
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Eric Weisstein's World of Mathematics, Prism Graph
- Wikipedia, Reed's Law
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Anssi Yli-Jyra, On Dependency Analysis via Contractions and Weighted FSTs, in Shall We Play the Festschrift Game?, Springer, 2012, pp. 133-158. - _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
-
a000295 n = 2^n - n - 1 -- Reinhard Zumkeller, Nov 25 2013
-
[2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
-
[EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
-
[ seq(2^n-n-1, n=1..50) ];
A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
# Grammar specification:
spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
struct := n -> combstruct[count](spec, size = n+1);
seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
-
a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
-
a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
-
[2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024
A000460
Eulerian numbers (Euler's triangle: column k=3 of A008292, column k=2 of A173018).
Original entry on oeis.org
1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739, 41932745, 126781020, 382439924, 1151775897, 3464764515, 10414216090, 31284590870, 93941852511, 282010106381, 846416194536, 2540053889352, 7621839388981, 22869007827143
Offset: 3
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. B. Remmel et al., The combinatorial properties of the Benoumhani polynomials for the Whitney numbers of Dowling lattices, Discrete Math., 342 (2019), 2966-2983. See page 2981.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, pp. 85-95, 2015.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
- Eric Weisstein's World of Mathematics, Eulerian Number
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
-
[3^n-(n+1)*2^n+(1/2)*n*(n+1): n in [3..30]]; // Vincenzo Librandi, Apr 18 2017
-
[EulerianNumber(n, 2): n in [3..40]]; // G. C. Greubel, Oct 02 2024
-
A000460:=-z*(-1-z+4*z**2)/(-1+3*z)/(2*z-1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
k = 3; Table[k^(n+k-1) + Sum[(-1)^i/i!*(k-i)^(n+k-1) * Product[n+k+1-j, {j, 1, i}], {i, k-1}], {n, 23}] (* or *)
Array[3^(# + 2) - (# + 3)*2^(# + 2) + (1/2)*(# + 2)*(# + 3) &, 23] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
A000460(n) = 3^(n+2)-(n+3)*2^(n+2)+(1/2)*(n+2)*(n+3)
-
def A000460(n): return 3^n - (n+1)*2^n + binomial(n+1,2)
[A000460(n) for n in range(3,31)] # G. C. Greubel, Oct 02 2024
A000498
Eulerian numbers (Euler's triangle: column k=4 of A008292, column k=3 of A173018).
Original entry on oeis.org
1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600, 274419271461131, 1103881308184906, 4434992805213952
Offset: 4
There is one permutation of 4 with exactly 3 descents (4321).
There are 26 permutations of 5 with 3 descents: 15432, 21543, 25431, 31542, 32154, 32541, 35421, 41532, 42153, 42531, 43152, 43215, 43251, 43521, 45321, 51432, 52143, 52431, 53142, 53214, 53241, 53421, 54132, 54213, 54231, 54312. - Neven Juric, Jan 21 2010.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- F. N. Castro, O. E. González, and L. A. Medina, The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers, 2014.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol. 8, p 85-95, 2015.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Eulerian Number
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (20,-175,882,-2835,6072,-8777,8458,-5204,1848,-288).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
-
[(6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+1))/6: n in [4..50]]; // G. C. Greubel, Oct 23 2017
-
[EulerianNumber(n,3): n in [4..50]]; // G. C. Greubel, Dec 07 2024
-
A000498:=proc(n); 4^n-(n+1)*3^n+1/2*(n)*(n+1)*2^n-1/6*(n-1)*(n)*(n+1); end:
-
LinearRecurrence[{20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288}, {1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450}, 30] (* Jean-François Alcover, Feb 09 2016 *)
Table[Sum[(-1)^k*Binomial[n+1,k]*(4-k)^n, {k,0,3}], {n,4,50}] (* G. C. Greubel, Oct 23 2017 *)
-
for(n=4,50, print1((6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+ 1))/6, ", ")) \\ G. C. Greubel, Oct 23 2017
-
from sage.combinat.combinat import eulerian_number
print([eulerian_number(n,3) for n in range(4,61)]) # G. C. Greubel, Dec 07 2024
A177042
Eulerian version of the Catalan numbers, a(n) = A008292(2*n+1,n+1)/(n+1).
Original entry on oeis.org
1, 2, 22, 604, 31238, 2620708, 325024572, 55942352184, 12765597850950, 3730771315561300, 1359124435588313876, 603916464771468176392, 321511316149669476991132, 202039976682357297272094824, 147980747895225006590333244088, 124963193751534047864734415925360
Offset: 0
-
A177042:=func< n | n eq 0 select 1 else 2*(&+[(-1)^k*Binomial(2*n+1,k)*(n-k+1)^(2*n): k in [0..n]]) >;
[A177042(n): n in [0..40]]; // G. C. Greubel, Jun 18 2024
-
A177042 := proc(n) A008292(2*n+1,n+1)/(n+1) ; end proc:
seq(A177042(n),n=0..10) ; # R. J. Mathar, Jan 08 2011
A177042 := n -> A025585(n+1)/(n+1):
A177042 := n -> `if`(n=0,1,2*A180056(n)):
# The A173018-based recursion below needs no division!
A := proc(n, k) option remember;
if n = 0 and k = 0 then 1
elif k > n or k < 0 then 0
else (n-k) *A(n-1, k-1) +(k+1) *A(n-1, k)
fi
end:
A177042 := n-> `if`(n=0, 1, 2*A(2*n, n)):
seq(A177042(n), n=0..30);
# Peter Luschny, Jan 11 2011
-
<< DiscreteMath`Combinatorica`
Table[(Eulerian[2*n + 1, n])/(n + 1), {n, 0, 20}]
(* Second program: *)
A[n_, k_] := A[n, k] = Which[n == 0 && k == 0, 1, k > n || k < 0, 0, True, (n - k)*A[n - 1, k - 1] + (k + 1)*A[n - 1, k]]; A177042[n_] := If[n == 0, 1, 2*A[2*n, n]]; Table[A177042[n], {n, 0, 30}] (* Jean-François Alcover, Jul 13 2017, after Peter Luschny *)
-
def A177042(n): return 2*sum((-1)^k*binomial(2*n+1,k)*(n-k+1)^(2*n) for k in range(n+1)) - int(n==0)
[A177042(n) for n in range(41)] # G. C. Greubel, Jun 18 2024
A142175
Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 36, 36, 1;
1, 133, 420, 133, 1;
1, 449, 3334, 3334, 449, 1;
1, 1446, 21939, 49364, 21939, 1446, 1;
1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
[A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
-
p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
-
A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 20 2018 */
-
# from sage.all import * # (use for Python)
from sage.combinat.combinat import eulerian_number
def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024
A000505
Eulerian numbers (Euler's triangle: column k=5 of A008292, column k=4 of A173018).
Original entry on oeis.org
1, 57, 1191, 15619, 156190, 1310354, 9738114, 66318474, 423281535, 2571742175, 15041229521, 85383238549, 473353301060, 2575022097600, 13796160184500, 73008517581444, 382493246941965, 1987497491971605, 10258045633638475
Offset: 5
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (35, -560, 5432, -35714, 168542, -589632, 1556776, -3126949, 4777591, -5506936, 4703032, -2881136, 1195632, -300672, 34560).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf.
A123125 (row reversed Euler's triangle).
-
[5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5): n in [5..25]]; // G. C. Greubel, Oct 23 2017
-
k = 5; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 19}] (* Michael De Vlieger, Aug 04 2015, after PARI at A001243 *)
a[n_] := 5^n - 2^(n-1)*n*(n^2-1)/3 - 4^n*(n+1) + 3^n*n*(n+1)/2 + (n-2)* (n-1)*n*(n+1)/24; Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Feb 09 2016 *)
-
A(n)=5^(n+4)-(n+5)*4^(n+4)+1/2*(n+4)*(n+5)*3^(n+4)-1/6*(n+3)*(n+4)*(n+5)*2^(n+4)+1/24*(n+2)*(n+3)*(n+4)*(n+5)
A000514
Eulerian numbers (Euler's triangle: column k=6 of A008292, column k=5 of A173018).
Original entry on oeis.org
1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928, 782115518299, 5717291972382, 40457344748072, 278794377854832, 1879708669896492, 12446388300682056, 81180715002105741, 522859244868123336, 3332058336247871041
Offset: 6
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 6..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (56, -1470, 24052, -275135, 2339340, -15343384, 79518296, -330867999, 1116881584, -3077867318, 6944399940, -12825741073, 19327952588, -23608674132, 23125043824, -17872240112, 10637255232, -4697205696, 1447365888, -277447680, 24883200).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
-
k = 6; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 17}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
A000514(n)=6^(n+6-1)+sum(i=1,6-1,(-1)^i/i!*(6-i)^(n+6-1)*prod(j=1,i,n+6+1-j))
-
x='x+O('x^50); Vec(serlaplace((1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) -540*x^2*(1+x)*exp(3*x) +80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)))) \\ G. C. Greubel, Oct 24 2017
A001243
Eulerian numbers (Euler's triangle: column k=7 of A008292, column k=6 of A173018).
Original entry on oeis.org
1, 247, 14608, 455192, 9738114, 162512286, 2275172004, 27971176092, 311387598411, 3207483178157, 31055652948388, 285997074307300, 2527925001876036, 21598596303099900, 179385804170146680
Offset: 7
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 7..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- R. G. Wilson, V, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (84, -3360, 85204, -1538460, 21061260, -227279184, 1984514004, -14280788214, 85828895124, -435042172944, 1872967672764, -6883607484444, 21668771179044, -58531231913904, 135734401224444, -270012108240369, 459750737925864, -667610836187984, 822369705703584, -852988627596768, 737567996531840, -524515347742464, 301116476275200, -135928473663744, 46399971446784, -11247176540160, 1723509964800, -125411328000).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
-
[EulerianNumber(n,6): n in [7..40]]; // G. C. Greubel, Dec 30 2024
-
k = 7; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
A001243(n)=7^(n+7-1)+sum(i=1,7-1,(-1)^i/i!*(7-i)^(n+7-1)*prod(j=1,i,n+7+1-j))
-
# from sage.all import * # (use for Python)
from sage.combinat.combinat import eulerian_number
print([eulerian_number(n,6) for n in range(7,41)]) # G. C. Greubel, Dec 30 2024
A141720
Triangle of coefficients of the polynomials (1 - x)^n*A(n,x/(1 - x)), where A(n,x) are the Eulerian polynomials of A008292.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 2, -2, 0, 1, 8, -8, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896
Offset: 1
Triangle begins:
0, 1;
0, 1;
0, 1, 2, -2;
0, 1, 8, -8;
0, 1, 22, -6, -32, 16;
0, 1, 52, 84, -272, 136;
0, 1, 114, 606, -1168, -96, 816, -272;
0, 1, 240, 2832, -2176, -8832, 11904, -3968;
0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936;
0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896;
...
Cf.
A008292,
A019538,
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A144387,
A144400,
A174128.
-
R:=PowerSeriesRing(Rationals(), 30);
f:= func< n,x | n eq 0 select 1 else (&+[EulerianNumber(n,j-1)*x^j*(1-x)^(n-j): j in [1..n]]) >;
A141720:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[A141720(n,k): k in [0..2*Floor((n+1)/2)-1], n in [1..15]]; // G. C. Greubel, Dec 30 2024
-
CL := p -> PolynomialTools:-CoefficientList(p,x): flatten := seq -> ListTools:-Flatten(seq): flatten([seq(CL(add(A008292(n,j)*x^j*(1-x)^(n-j), j=1..n)), n=1..10)]); # Peter Luschny, Oct 25 2018
-
Table[CoefficientList[FullSimplify[(1-2x)^(1+n)*PolyLog[-n, x/(1-x)]/(1-x)], x], {n, 1, 10}]//Flatten
-
def A(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
def p(n,x): return sum( A(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def A141720(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
flatten([A141720(n) for n in range(1,13)]) # G. C. Greubel, Jul 15 2021
A154693
Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).
Original entry on oeis.org
2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0
The triangle begins as:
2;
3, 3;
5, 16, 5;
9, 66, 66, 9;
17, 260, 528, 260, 17;
33, 1026, 3624, 3624, 1026, 33;
65, 4080, 23820, 38656, 23820, 4080, 65;
129, 16302, 154548, 374856, 374856, 154548, 16302, 129;
257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3)
-
A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >;
[A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
-
p=2; q=1;
A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
from sage.combinat.combinat import eulerian_number
def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k)
print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.
Showing 1-10 of 413 results.
Comments