cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 413 results. Next

A000295 Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of Dyck paths of semilength n having exactly one long ascent (i.e., ascent of length at least two). Example: a(4)=11 because among the 14 Dyck paths of semilength 4, the paths that do not have exactly one long ascent are UDUDUDUD (no long ascent), UUDDUUDD and UUDUUDDD (two long ascents). Here U=(1,1) and D=(1,-1). Also number of ordered trees with n edges having exactly one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of permutations of {1,2,...,n} with exactly one descent (i.e., permutations (p(1),p(2),...,p(n)) such that #{i: p(i)>p(i+1)}=1). E.g., a(3)=4 because the permutations of {1,2,3} with one descent are 132, 213, 231 and 312.
a(n+1) is the convolution of nonnegative integers (A001477) and powers of two (A000079). - Graeme McRae, Jun 07 2006
Partial sum of main diagonal of A125127. - Jonathan Vos Post, Nov 22 2006
Number of partitions of an n-set having exactly one block of size > 1. Example: a(4)=11 because, if the partitioned set is {1,2,3,4}, then we have 1234, 123|4, 124|3, 134|2, 1|234, 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34. - Emeric Deutsch, Oct 28 2006
k divides a(k+1) for k in A014741. - Alexander Adamchuk, Nov 03 2006
(Number of permutations avoiding patterns 321, 2413, 3412, 21534) minus one. - Jean-Luc Baril, Nov 01 2007, Mar 21 2008
The chromatic invariant of the prism graph P_n for n >= 3. - Jonathan Vos Post, Aug 29 2008
Decimal integer corresponding to the result of XORing the binary representation of 2^n - 1 and the binary representation of n with leading zeros. This sequence and a few others are syntactically similar. For n > 0, let D(n) denote the decimal integer corresponding to the binary number having n consecutive 1's. Then D(n).OP.n represents the n-th term of a sequence when .OP. stands for a binary operator such as '+', '-', '*', 'quotentof', 'mod', 'choose'. We then get the various sequences A136556, A082495, A082482, A066524, A000295, A052944. Another syntactically similar sequence results when we take the n-th term as f(D(n)).OP.f(n). For example if f='factorial' and .OP.='/', we get (A136556)(A000295) ; if f='squaring' and .OP.='-', we get (A000295)(A052944). - K.V.Iyer, Mar 30 2009
Chromatic invariant of the prism graph Y_n.
Number of labelings of a full binary tree of height n-1, such that each path from root to any leaf contains each label from {1,2,...,n-1} exactly once. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009
Also number of nontrivial equivalence classes generated by the weak associative law X((YZ)T)=(X(YZ))T on words with n open and n closed parentheses. Also the number of join (resp. meet)-irreducible elements in the pruning-grafting lattice of binary trees with n leaves. - Jean Pallo, Jan 08 2010
Nonzero terms of this sequence can be found from the row sums of the third sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
{1}, 2, 1;
{1, 3}, 3, 1;
{1, 4, 6}, 4, 1;
{1, 5, 10, 10}, 5, 1;
{1, 6, 15, 20, 15}, 6, 1;
... - L. Edson Jeffery, Dec 28 2011
For integers a, b, denote by a<+>b the least c >= a, such that the Hamming distance D(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then for n >= 3, a(n) = n<+>n. This has a simple explanation: for n >= 3 in binary we have a(n) = (2^n-1)-n = "anti n". - Vladimir Shevelev, Feb 14 2012
a(n) is the number of binary sequences of length n having at least one pair 01. - Branko Curgus, May 23 2012
Nonzero terms are those integers k for which there exists a perfect (Hamming) error-correcting code. - L. Edson Jeffery, Nov 28 2012
a(n) is the number of length n binary words constructed in the following manner: Select two positions in which to place the first two 0's of the word. Fill in all (possibly none) of the positions before the second 0 with 1's and then complete the word with an arbitrary string of 0's or 1's. So a(n) = Sum_{k=2..n} (k-1)*2^(n-k). - Geoffrey Critzer, Dec 12 2013
Without first 0: a(n)/2^n equals Sum_{k=0..n} k/2^k. For example: a(5)=57, 57/32 = 0/1 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32. - Bob Selcoe, Feb 25 2014
The first barycentric coordinate of the centroid of the first n rows of Pascal's triangle, assuming the numbers are weights, is A000295(n+1)/A000337(n). See attached figure. - César Eliud Lozada, Nov 14 2014
Starting (0, 1, 4, 11, ...), this is the binomial transform of (0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Also the number of (non-null) connected induced subgraphs in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Aug 27 2017
a(n) is the number of swaps needed in the worst case to transform a binary tree with n full levels into a heap, using (bottom-up) heapify. - Rudy van Vliet, Sep 19 2017
The utility of large networks, particularly social networks, with n participants is given by the terms a(n) of this sequence. This assertion is known as Reed's Law, see the Wikipedia link. - Johannes W. Meijer, Jun 03 2019
a(n-1) is the number of subsets of {1..n} in which the largest element of the set exceeds by at least 2 the next largest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,2,5}, {1,3,5}, {2,3,5}, {1,2,3,5}. - Enrique Navarrete, Apr 08 2020
a(n-1) is also the number of subsets of {1..n} in which the second smallest element of the set exceeds by at least 2 the smallest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,4,5}, {1,3,4,5}. - Enrique Navarrete, Apr 09 2020
a(n+1) is the sum of the smallest elements of all subsets of {1..n}. For example, for n=3, a(4)=11; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 11. - Enrique Navarrete, Aug 20 2020
Number of subsets of an n-set that have more than one element. - Eric M. Schmidt, Mar 13 2021
Number of individual bets in a "full cover" bet on n-1 horses, dogs, etc. in different races. Each horse, etc. can be bet on or not, giving 2^n bets. But, by convention, singles (a bet on only one race) are not included, reducing the total number bets by n. It is also impossible to bet on no horses at all, reducing the number of bets by another 1. A full cover on 4 horses, dogs, etc. is therefore 6 doubles, 4 trebles and 1 four-horse etc. accumulator. In British betting, such a bet on 4 horses etc. is a Yankee; on 5, a super-Yankee. - Paul Duckett, Nov 17 2021
From Enrique Navarrete, May 25 2022: (Start)
Number of binary sequences of length n with at least two 1's.
a(n-1) is the number of ways to choose an odd number of elements greater than or equal to 3 out of n elements.
a(n+1) is the number of ways to split [n] = {1,2,...,n} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n} and then select a subset from the first interval (2^i choices, 0 <= i <= n), and one block/cell (i.e., subinterval) from the second interval (n-i choices, 0 <= i <= n).
(End)
Number of possible conjunctions in a system of n planets; for example, there can be 0 conjunctions with one planet, one with two planets, four with three planets (three pairs of planets plus one with all three) and so on. - Wendy Appleby, Jan 02 2023
Largest exponent m such that 2^m divides (2^n-1)!. - Franz Vrabec, Aug 18 2023
It seems that a(n-1) is the number of odd r with 0 < r < 2^n for which there exist u,v,w in the x-independent beginning of the Collatz trajectory of 2^n x + r with u+v = w+1, as detailed in the link "Collatz iteration and Euler numbers?". A better understanding of this might also give a formula for A374527. - Markus Sigg, Aug 02 2024
This sequence has a connection to consecutively halved positional voting (CHPV); see Mendenhall and Switkay. - Hal M. Switkay, Feb 25 2025
a(n) is the number of subsets of size 2 and more of an n-element set. Equivalently, a(n) is the number of (hyper)edges of size 2 and more in a complete hypergraph of n vertices. - Yigit Oktar, Apr 05 2025

Examples

			G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
		

References

  • O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A002662 (partial sums).
Partial sums of A000225.
Row sums of A014473 and of A143291.
Second column of triangles A112493 and A112500.
Sequences A125128 and A130103 are essentially the same.
Column k=1 of A124324.

Programs

  • Haskell
    a000295 n = 2^n - n - 1  -- Reinhard Zumkeller, Nov 25 2013
    
  • Magma
    [2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
    
  • Magma
    [EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    [ seq(2^n-n-1, n=1..50) ];
    A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
    # Grammar specification:
    spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
    struct := n -> combstruct[count](spec, size = n+1);
    seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
  • Mathematica
    a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
    Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
    LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
    Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
  • PARI
    a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • SageMath
    [2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 2^n - n - 1.
G.f.: x^2/((1-2*x)*(1-x)^2).
A107907(a(n+2)) = A000079(n+2). - Reinhard Zumkeller, May 28 2005
E.g.f.: exp(x)*(exp(x)-1-x). - Emeric Deutsch, Oct 28 2006
a(0)=0, a(1)=0, a(n) = 3*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(0)=0, a(n) = 2*a(n-1) + n - 1 for all n in Z.
a(n) = Sum_{k=2..n} binomial(n, k). - Paul Barry, Jun 05 2003
a(n+1) = Sum_{i=1..n} Sum_{j=1..i} C(i, j). - Benoit Cloitre, Sep 07 2003
a(n+1) = 2^n*Sum_{k=0..n} k/2^k. - Benoit Cloitre, Oct 26 2003
a(0)=0, a(1)=0, a(n) = Sum_{i=0..n-1} i+a(i) for i > 1. - Gerald McGarvey, Jun 12 2004
a(n+1) = Sum_{k=0..n} (n-k)*2^k. - Paul Barry, Jul 29 2004
a(n) = Sum_{k=0..n} binomial(n, k+2); a(n+2) = Sum_{k=0..n} binomial(n+2, k+2). - Paul Barry, Aug 23 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k+1)*2^(n-k-2)*(-1/2)^k. - Paul Barry, Oct 25 2004
a(0) = 0; a(n) = Stirling2(n,2) + a(n-1) = A000225(n-1) + a(n-1). - Thomas Wieder, Feb 18 2007
a(n) = A000325(n) - 1. - Jonathan Vos Post, Aug 29 2008
a(0) = 0, a(n) = Sum_{k=0..n-1} 2^k - 1. - Doug Bell, Jan 19 2009
a(n) = A000217(n-1) + A002662(n) for n>0. - Geoffrey Critzer, Feb 11 2009
a(n) = A000225(n) - n. - Zerinvary Lajos, May 29 2009
a(n) = n*(2F1([1,1-n],[2],-1) - 1). - Olivier Gérard, Mar 29 2011
Column k=1 of A173018 starts a'(n) = 0, 1, 4, 11, ... and has the hypergeometric representation n*hypergeom([1, -n+1], [-n], 2). This can be seen as a formal argument to prefer Euler's A173018 over A008292. - Peter Luschny, Sep 19 2014
E.g.f.: exp(x)*(exp(x)-1-x); this is U(0) where U(k) = 1 - x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n) = A079583(n) - A000225(n+1). - Miquel Cerda, Dec 25 2016
a(0) = 0; a(1) = 0; for n > 1: a(n) = Sum_{i=1..2^(n-1)-1} A001511(i). - David Siegers, Feb 26 2019
a(n) = A007814(A028366(n)). - Franz Vrabec, Aug 18 2023
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n+1, 2*k+1). - Taras Goy, Jan 02 2025

A000460 Eulerian numbers (Euler's triangle: column k=3 of A008292, column k=2 of A173018).

Original entry on oeis.org

1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739, 41932745, 126781020, 382439924, 1151775897, 3464764515, 10414216090, 31284590870, 93941852511, 282010106381, 846416194536, 2540053889352, 7621839388981, 22869007827143
Offset: 3

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of permutations of [n] with exactly 2 descents. - Mike Zabrocki, Nov 10 2004

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. B. Remmel et al., The combinatorial properties of the Benoumhani polynomials for the Whitney numbers of Dowling lattices, Discrete Math., 342 (2019), 2966-2983. See page 2981.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A000295.

Programs

  • Magma
    [3^n-(n+1)*2^n+(1/2)*n*(n+1): n in [3..30]]; // Vincenzo Librandi, Apr 18 2017
    
  • Magma
    [EulerianNumber(n, 2): n in [3..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    A000460:=-z*(-1-z+4*z**2)/(-1+3*z)/(2*z-1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    k = 3; Table[k^(n+k-1) + Sum[(-1)^i/i!*(k-i)^(n+k-1) * Product[n+k+1-j, {j, 1, i}], {i, k-1}], {n, 23}] (* or *)
    Array[3^(# + 2) - (# + 3)*2^(# + 2) + (1/2)*(# + 2)*(# + 3) &, 23] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A000460(n) = 3^(n+2)-(n+3)*2^(n+2)+(1/2)*(n+2)*(n+3)
    
  • SageMath
    def A000460(n): return 3^n - (n+1)*2^n + binomial(n+1,2)
    [A000460(n) for n in range(3,31)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 3^n - (n+1)*2^n + (1/2)*n*(n+1). - Randall L Rathbun, Jan 22 2002
G.f.: x^3*(1+x-4*x^2)/((1-x)^3*(1-2*x)^2*(1-3*x)). - Mike Zabrocki, Nov 10 2004
E.g.f.: exp(x)*(exp(2*x) - (1 + 2*x)*exp(x) + x + x^2/2). - Wolfdieter Lang, Apr 17 2017

Extensions

More terms from Christian G. Bower, May 12 2000
More terms from Mike Zabrocki, Nov 10 2004

A000498 Eulerian numbers (Euler's triangle: column k=4 of A008292, column k=3 of A173018).

Original entry on oeis.org

1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912, 3572085255, 14875399450, 61403313100, 251732291184, 1026509354985, 4168403181210, 16871482830550, 68111623139600, 274419271461131, 1103881308184906, 4434992805213952
Offset: 4

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0.(Graham et al.)
Number of permutations of n letters with exactly 3 descents.

Examples

			There is one permutation of 4 with exactly 3 descents (4321).
There are 26 permutations of 5 with 3 descents: 15432, 21543, 25431, 31542, 32154, 32541, 35421, 41532, 42153, 42531, 43152, 43215, 43251, 43521, 45321, 51432, 52143, 52431, 53142, 53214, 53241, 53421, 54132, 54213, 54231, 54312. - Neven Juric, Jan 21 2010.
		

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
Cf. A066912.

Programs

  • Magma
    [(6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+1))/6: n in [4..50]]; // G. C. Greubel, Oct 23 2017
    
  • Magma
    [EulerianNumber(n,3): n in [4..50]]; // G. C. Greubel, Dec 07 2024
    
  • Maple
    A000498:=proc(n); 4^n-(n+1)*3^n+1/2*(n)*(n+1)*2^n-1/6*(n-1)*(n)*(n+1); end:
  • Mathematica
    LinearRecurrence[{20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288}, {1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450}, 30] (* Jean-François Alcover, Feb 09 2016 *)
    Table[Sum[(-1)^k*Binomial[n+1,k]*(4-k)^n, {k,0,3}], {n,4,50}] (* G. C. Greubel, Oct 23 2017 *)
  • PARI
    for(n=4,50, print1((6*4^n -6*(n+1)*3^n +3*n*(n+1)*2^n -(n-1)*n*(n+ 1))/6, ", ")) \\ G. C. Greubel, Oct 23 2017
    
  • SageMath
    from sage.combinat.combinat import eulerian_number
    print([eulerian_number(n,3) for n in range(4,61)]) # G. C. Greubel, Dec 07 2024

Formula

From Mike Zabrocki, Nov 12 2004: (Start)
G.f.: x^4*(1 + 6*x - 43*x^2 + 44*x^3 + 52*x^4 - 72*x^5)/((1-x)^4 * (1-2*x)^3 * (1-3*x)^2 * (1-4*x)).
a(n) = (6*4^n - 6*(n + 1)*3^n + 3*(n)*(n + 1)*2^n - (n - 1)*(n)*(n + 1))/6. (End)
If n>3 is prime, then a(n) == 1 (mod n). A generalization: if a_t(n) denote the number of permutations of n letters with exactly t descents (column t+1 of Euler's triangle A008292), then, for prime n>t, we have a(n) == 1 (mod n). - Vladimir Shevelev, Sep 26 2010
E.g.f.: exp(x)*(exp(3*x) - (1 + 3*x)*exp(2*x) + 2*(x + 2*x^2/2!)*exp(x) - x^2/2! - x^3/3!). - Wolfdieter Lang, Apr 17 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A177042 Eulerian version of the Catalan numbers, a(n) = A008292(2*n+1,n+1)/(n+1).

Original entry on oeis.org

1, 2, 22, 604, 31238, 2620708, 325024572, 55942352184, 12765597850950, 3730771315561300, 1359124435588313876, 603916464771468176392, 321511316149669476991132, 202039976682357297272094824, 147980747895225006590333244088, 124963193751534047864734415925360
Offset: 0

Views

Author

Roger L. Bagula, May 01 2010

Keywords

Comments

According to the Bidkhori and Sullivant reference's abstract, authors show "that the Eulerian-Catalan numbers enumerate Dyck permutations, [providing] two proofs for this fact, the first using the geometry of alcoved polytopes and the second a direct combinatorial proof via an Eulerian-Catalan analog of the Chung-Feller theorem." - Jonathan Vos Post, Jan 07 2011
Twice the number of permutations of {1,2,...,2n} with n ascents. - Peter Luschny, Jan 11 2011

Crossrefs

Bisection (odd part) of A303287.
Row sums of A316728.

Programs

  • Magma
    A177042:=func< n | n eq 0 select 1 else 2*(&+[(-1)^k*Binomial(2*n+1,k)*(n-k+1)^(2*n): k in [0..n]]) >;
    [A177042(n): n in [0..40]]; // G. C. Greubel, Jun 18 2024
    
  • Maple
    A177042 := proc(n) A008292(2*n+1,n+1)/(n+1) ; end proc:
    seq(A177042(n),n=0..10) ; # R. J. Mathar, Jan 08 2011
    A177042 := n -> A025585(n+1)/(n+1):
    A177042 := n -> `if`(n=0,1,2*A180056(n)):
    # The A173018-based recursion below needs no division!
    A := proc(n, k) option remember;
           if n = 0 and k = 0 then 1
         elif k > n  or k < 0 then 0
         else (n-k) *A(n-1, k-1) +(k+1) *A(n-1, k)
           fi
         end:
    A177042 := n-> `if`(n=0, 1, 2*A(2*n, n)):
    seq(A177042(n), n=0..30);
    # Peter Luschny, Jan 11 2011
  • Mathematica
    << DiscreteMath`Combinatorica`
    Table[(Eulerian[2*n + 1, n])/(n + 1), {n, 0, 20}]
    (* Second program: *)
    A[n_, k_] := A[n, k] = Which[n == 0 && k == 0, 1, k > n || k < 0, 0, True, (n - k)*A[n - 1, k - 1] + (k + 1)*A[n - 1, k]]; A177042[n_] := If[n == 0, 1, 2*A[2*n, n]]; Table[A177042[n], {n, 0, 30}] (* Jean-François Alcover, Jul 13 2017, after Peter Luschny *)
  • SageMath
    def A177042(n): return 2*sum((-1)^k*binomial(2*n+1,k)*(n-k+1)^(2*n) for k in range(n+1)) - int(n==0)
    [A177042(n) for n in range(41)] # G. C. Greubel, Jun 18 2024

Formula

a(n) = 2*A180056(n) for n > 0, A180056 the central Eulerian numbers in the sense of A173018.
a(n) = A025585(n+1)/(n+1), A025585 the central Eulerian numbers in the sense of A008292.
a(n) = 2 Sum_{k=0..n} (-1)^k binomial(2n+1,k) (n-k+1)^(2n).
a(n) = (n+1)^(-1) Sum_{k=0..n} (-1)^k binomial(2n+2,k)(n+1-k)^(2n+1). - Peter Luschny, Jan 11 2011
a(n) = A008518(2n,n). - Alois P. Heinz, Jun 12 2017
From Alois P. Heinz, Jul 21 2018: (Start)
a(n) = (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x)).
a(n) = (2n+1)!/(n+1) * [x^(2n+1) y^(n+1)] (1-y)/(1-y*exp((1-y)*x)). (End)

Extensions

Edited by Alois P. Heinz, Jan 14 2011

A142175 Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 16 2008

Keywords

Comments

Row n gives the coefficients in the expansion of (1/4)*(1 + x)^n + (9/4)*2^n*(1 - x)^(1 + n)*Phi(x, -n, 1/2) - (3/2)*(1 - x)^(n + 2)*Phi(x, -1 - n, 1), where Phi is the Lerch transcendant.

Examples

			Triangle begins:
     1;
     1,    1;
     1,    8,      1;
     1,   36,     36,      1;
     1,  133,    420,    133,      1;
     1,  449,   3334,   3334,    449,      1;
     1, 1446,  21939,  49364,  21939,   1446,    1;
     1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
    [A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
    
  • Mathematica
    p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
  • Maxima
    A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
    A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
    T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 20 2018 */
    
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
    def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
    print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024

Formula

E.g.f.: (exp((1 + x)*y) - 6*(1 - x)^2*exp(y*(1 - x))/(1 - x*exp(y*(1 - x)))^2 + 9*(1 - x)*exp((1 - x)*y)/(1 - x*exp(2*(1 - x)*y)))/4. - Franck Maminirina Ramaharo, Oct 20 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018

A000505 Eulerian numbers (Euler's triangle: column k=5 of A008292, column k=4 of A173018).

Original entry on oeis.org

1, 57, 1191, 15619, 156190, 1310354, 9738114, 66318474, 423281535, 2571742175, 15041229521, 85383238549, 473353301060, 2575022097600, 13796160184500, 73008517581444, 382493246941965, 1987497491971605, 10258045633638475
Offset: 5

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of permutations of n letters with exactly 4 descents. - Neven Juric, Jan 21 2010

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed Euler's triangle).
Cf. A000012, A000460, A000498 (columns for smaller k).

Programs

  • Magma
    [5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5): n in [5..25]]; // G. C. Greubel, Oct 23 2017
  • Mathematica
    k = 5; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 19}] (* Michael De Vlieger, Aug 04 2015, after PARI at A001243 *)
    a[n_] := 5^n - 2^(n-1)*n*(n^2-1)/3 - 4^n*(n+1) + 3^n*n*(n+1)/2 + (n-2)* (n-1)*n*(n+1)/24; Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    A(n)=5^(n+4)-(n+5)*4^(n+4)+1/2*(n+4)*(n+5)*3^(n+4)-1/6*(n+3)*(n+4)*(n+5)*2^(n+4)+1/24*(n+2)*(n+3)*(n+4)*(n+5)
    

Formula

a(n) = 5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5). - Randall L Rathbun, Jan 22 2002
E.g.f.: (1/24)*exp(x)*(x^4 + 8*x^3 + 12*x^2) - 4*exp(2*x)*(2*x^3/3 + 2*x^2 + x) + 3*exp(3*x)*(9*x^2/2 + 6*x + 1) - 8*exp(4*x)*(2*x + 1) + 5*exp(5*x). - Wenjin Woan, Oct 21 2007
G.f.: (1 + 22*x - 244*x^2 + 422*x^3 + 2575*x^4 - 12012*x^5 + 17828*x^6 - 5664*x^7 - 9552*x^8 + 6912*x^9)*(x/(1-x))^5 / Product_{j=1..4} (1 - (6-j)*x)^j. See the recurrence given in an Apr 03 2017 comment on A123125. - Wolfdieter Lang, Apr 03 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A000514 Eulerian numbers (Euler's triangle: column k=6 of A008292, column k=5 of A173018).

Original entry on oeis.org

1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928, 782115518299, 5717291972382, 40457344748072, 278794377854832, 1879708669896492, 12446388300682056, 81180715002105741, 522859244868123336, 3332058336247871041
Offset: 6

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed version of A173018).
Cf. A000012, A000460, A000498, A000505 (columns for smaller k).

Programs

  • Mathematica
    k = 6; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 17}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A000514(n)=6^(n+6-1)+sum(i=1,6-1,(-1)^i/i!*(6-i)^(n+6-1)*prod(j=1,i,n+6+1-j))
    
  • PARI
    x='x+O('x^50); Vec(serlaplace((1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) -540*x^2*(1+x)*exp(3*x) +80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)))) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = 6^(n+6-1) + Sum_{i=1..6-1} ((-1)^i/i!)*(6-i)^(n+6-1)*Product_{j=1..i} (n+6+1-j). - Randall L Rathbun, Jan 23 2002
E.g.f.: (1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) - 540*x^2*(1+x)*exp(3*x) + 80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)). - Wenjin Woan, Oct 25 2007 (Corrected by G. C. Greubel, Oct 24 2017)
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 03 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A001243 Eulerian numbers (Euler's triangle: column k=7 of A008292, column k=6 of A173018).

Original entry on oeis.org

1, 247, 14608, 455192, 9738114, 162512286, 2275172004, 27971176092, 311387598411, 3207483178157, 31055652948388, 285997074307300, 2527925001876036, 21598596303099900, 179385804170146680
Offset: 7

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
Cf. A000012, A000460, A000498, A000505, A000514 (columns for smaller k).

Programs

  • Magma
    [EulerianNumber(n,6): n in [7..40]]; // G. C. Greubel, Dec 30 2024
    
  • Mathematica
    k = 7; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A001243(n)=7^(n+7-1)+sum(i=1,7-1,(-1)^i/i!*(7-i)^(n+7-1)*prod(j=1,i,n+7+1-j))
    
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    print([eulerian_number(n,6) for n in range(7,41)]) # G. C. Greubel, Dec 30 2024

Formula

a(n) = 7^(n+7-1) + Sum_{i=1..7-1} ((-1)^i/i!)*(7-i)^(n+7-1) * Product_{j=1..i} (n+7+1 - j). - Randall L Rathbun, Jan 23 2002
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 19 2017
a(n) = 7^(n+6) + Sum_{j=1..6} (-1)^j*binomial(n+7, j)*(7-j)^(n+6). - G. C. Greubel, Dec 30 2024

Extensions

More terms from Christian G. Bower, May 12 2000

A141720 Triangle of coefficients of the polynomials (1 - x)^n*A(n,x/(1 - x)), where A(n,x) are the Eulerian polynomials of A008292.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 2, -2, 0, 1, 8, -8, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896
Offset: 1

Views

Author

Roger L. Bagula, Sep 11 2008

Keywords

Comments

Row sums are one.
Row n gives the coefficients in the expansion of Sum_{j=1..n} A008292(n,j)*x^j*(1 - x)^(n - j).
The coefficients of the polynomials (1 + x)^n*A(n,x/(1 + x)) are listed in A019538.

Examples

			Triangle begins:
  0, 1;
  0, 1;
  0, 1,    2,    -2;
  0, 1,    8,    -8;
  0, 1,   22,    -6,    -32,      16;
  0, 1,   52,    84,   -272,     136;
  0, 1,  114,   606,  -1168,     -96,    816,   -272;
  0, 1,  240,  2832,  -2176,   -8832,  11904,  -3968;
  0, 1,  494, 11122,  11072,  -83360,  71168,  13312,  -31744,   7936;
  0, 1, 1004, 39772, 148592, -472760, -17152, 831232, -707584, 176896;
  ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< n,x | n eq 0 select 1 else (&+[EulerianNumber(n,j-1)*x^j*(1-x)^(n-j): j in [1..n]]) >;
    A141720:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [A141720(n,k): k in [0..2*Floor((n+1)/2)-1], n in [1..15]]; // G. C. Greubel, Dec 30 2024
  • Maple
    CL := p -> PolynomialTools:-CoefficientList(p,x): flatten := seq -> ListTools:-Flatten(seq): flatten([seq(CL(add(A008292(n,j)*x^j*(1-x)^(n-j), j=1..n)), n=1..10)]); # Peter Luschny, Oct 25 2018
  • Mathematica
    Table[CoefficientList[FullSimplify[(1-2x)^(1+n)*PolyLog[-n, x/(1-x)]/(1-x)], x], {n, 1, 10}]//Flatten
  • Sage
    def A(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k))
    def p(n,x): return sum( A(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def A141720(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([A141720(n) for n in range(1,13)]) # G. C. Greubel, Jul 15 2021
    

Formula

Row n is generated by the polynomial (1 - 2*x)^(n+1)*Li(-n, x/(1-x))/(1 - x), where Li(n, z) is the polylogarithm function.
Also generated by Sum_{k=0..n} (eulerian(n,k)*Sum_{l=0..n} (-1)^l*(n - l + 1)*(2 - x)^l*C(l + 1, k)). - Mourad Rahmani (mrahmani(AT)usthb.dz), Jul 22 2010
E.g.f.: (x*exp(2*x*y) - x*exp(y))/(x*exp(y) - (1 - x)*exp(2*x*y)). - Franck Maminirina Ramaharo, Oct 24 2018

Extensions

Edited by Peter Bala, Jul 04 2012
Edited, and extra term removed by Franck Maminirina Ramaharo, Oct 24 2018

A154693 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).

Original entry on oeis.org

2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 17 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A008292(n+1, k+1). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A008292(n,k).
(p, q) = (2, 2) : 2*A257609(n,k).
(p, q) = (3, 2) : A154694(n,k).
(p, q) = (3, 3) : 2*A257620(n,k). (End)

Examples

			The triangle begins as:
    2;
    3,     3;
    5,    16,      5;
    9,    66,     66,       9;
   17,   260,    528,     260,      17;
   33,  1026,   3624,    3624,    1026,      33;
   65,  4080,  23820,   38656,   23820,    4080,     65;
  129, 16302, 154548,  374856,  374856,  154548,  16302,   129;
  257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260,  257;
		

Crossrefs

Cf. A000629 (row sums), A008292, A154694, A257609, A257620.

Programs

  • Magma
    A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >;
    [A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    p=2; q=1;
    A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
    T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • SageMath
    from sage.combinat.combinat import eulerian_number
    def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k)
    print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1)
Sum_{k=0..n} T(n, k) = A000629(n+1).

Extensions

Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.
Showing 1-10 of 413 results. Next