cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A176018 a(n) = binomial(A000460(n), 3).

Original entry on oeis.org

165, 45760, 4545100, 280859635, 13177343466, 519435748656, 18247149400480, 592679189880470, 18233421432967455, 539997542625453900, 15568435368162197664, 440371777466788015089, 12288775148056292092340, 339634237637121659008140
Offset: 4

Views

Author

Roger L. Bagula, Dec 06 2010

Keywords

Crossrefs

Cf. A093566.

Programs

  • Mathematica
    Table[Binomial[Eulerian[n + 1, 2], 3], {n, 3, 30}]

A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010
Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.
T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004
T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004
Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006
T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006
[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).
G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.
(End)
A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008
Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008
For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008
The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009
From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)
The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:
S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is
S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.
(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)
If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011
The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011
Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011
Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014
Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015
The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016
Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017
For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018
Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4       5       6      7     8    9 10 ...
1:  1
2:  1    1
3:  1    4     1
4:  1   11    11      1
5:  1   26    66     26       1
6:  1   57   302    302      57       1
7:  1  120  1191   2416    1191     120      1
8:  1  247  4293  15619   15619    4293    247     1
9:  1  502 14608  88234  156190   88234  14608   502    1
10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
-----------------------------------------------------------------
E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - _Michael Somos_, Mar 17 2011
Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - _Vladimir Shevelev_, Jul 01 2011
Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are
.
.   1o (1+t)         1o t         1o t
.   |                / \          / \
.   |               /   \        /   \
.   2o (1+t)      2o     3o    3o    2o
.   |
.   |
.   3o
.
The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).
  • Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.
  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
  • K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Jun 29 2018
    
  • Haskell
    import Data.List (genericLength)
    a008292 n k = a008292_tabl !! (n-1) !! (k-1)
    a008292_row n = a008292_tabl !! (n-1)
    a008292_tabl = iterate f [1] where
       f xs = zipWith (+)
         (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)
         where ks = [1 .. 1 + genericLength xs]
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n,k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019
  • Maple
    A008292 := proc(n,k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc:
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)
    Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)
    Table[Tally[
       Count[#, x_ /; x > 0] & /@ (Differences /@
          Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {A(n,c)=c^(n+c-1)+sum(i=1,c-1,(-1)^i/i!*(c-i)^(n+c-1)*prod(j=1,i,n+c+1-j))}
    
  • Python
    from sympy import binomial
    def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017
    
  • R
    T <- function(n, k) {
      S <- numeric()
      for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))
      return(sum(S))
    }
    for (n in 1:10){
      for (k in 1:n) print(T(n,k))
    } # Indranil Ghosh, Nov 08 2017
    
  • Sage
    [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
    

Formula

T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.
T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).
Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011
E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011
For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002
From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)
Four characterizations of Eulerian numbers T(i, n):
1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).
2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.
3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.
4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)
O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008
G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010
If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0..2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.
The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.
(End)
With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011
T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011
E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012
From Peter Bala, Mar 12 2013: (Start)
Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).
(End)
E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
From Tom Copeland, Sep 18 2014: (Start)
A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...
B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).
C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).
D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).
E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).
F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)
For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015
Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015
For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015
From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^(m-1) (1, a+b, 2ab, 0, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^m (0, 1, 0, ...)^T. - Tom Copeland, Aug 02 2016
Cumulatively summing a row generates the n starting terms of the n-th differences of the n-th powers. Applying the finite difference method to x^n, these terms correspond to those before constant n! in the lowest difference row. E.g., T(4,k) is summed as 0+1=1, 1+11=12, 12+11=23, 23+1=4!. See A101101, A101104, A101100, A179457. - Andy Nicol, May 25 2024

Extensions

Thanks to Michael Somos for additional comments.
Further comments from Christian G. Bower, May 12 2000

A123125 Triangle of Eulerian numbers T(n,k), 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 66, 26, 1, 0, 1, 57, 302, 302, 57, 1, 0, 1, 120, 1191, 2416, 1191, 120, 1, 0, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 0, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 0, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 30 2006

Keywords

Comments

The beginning of this sequence does not quite agree with the usual version, which is A173018. - N. J. A. Sloane, Nov 21 2010
Each row of A123125 is the reverse of the corresponding row in A173018. - Michael Somos, Mar 17 2011
A008292 (subtriangle for k>=1 and n>=1) is the main entry for these numbers.
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,...] DELTA [1,0,2,0,3,0,4,0,5,0,6,...] where DELTA is the operator defined in A084938.
Row sums are the factorials. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008
If the initial zero column is deleted, the result is A008292. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008
This result gives an alternative method of calculating the Eulerian numbers by an Umbral Calculus expansion from Comtet. - Roger L. Bagula, Nov 21 2009
This function seems to be equivalent to the PolyLog expansion. - Roger L. Bagula, Nov 21 2009
A raising operator formed from the e.g.f. of this entry is the generator of a sequence of polynomials p(n,x;t) defined in A046802 that specialize to those for A119879 as p(n,x;-1), A007318 as p(n,x;0), A073107 as p(n,x;1), and A046802 as p(n,0;t). See Copeland link for more associations. - Tom Copeland, Oct 20 2015
The Eulerian numbers in this setup count the permutation trees of power n and width k (see the Luschny link). For the associated combinatorial statistic over permutations see the Sage program below and the example section. - Peter Luschny, Dec 09 2015 [See Elder et al. link. Peter Luschny, Jul 13 2022]
From Wolfdieter Lang, Apr 03 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k are the numerator polynomials of the o.g.f. G(n, x) of n-powers {m^n}_{m>=0} (with 0^0 = 1): G(n, x) = R(n, x)/(1-x)^(n+1). See the Aug 14 2008 formula, where f(x,n) = R(n, x). The e.g.f. of R(n, t) is given in Copeland's Oct 14 2015 formula below.
The first nine column sequences are A000007, A000012, A000295, A000460, A000498, A000505, A000514, A001243, A001244. (End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of this entry, A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
Let b(n) = (1/(n+1))*Sum_{k=0..n-1} (-1)^(n-k+1)*T(n, k+1) / binomial(n, k+1). Then b(n) = Bernoulli(n, 1) = -n*Zeta(1 - n) = Integral_{x=0..1} F_n(x) for n >= 1. Here F_n(x) are the signed Fubini polynomials (A278075). (See also Rzadkowski and Urlinska, example 1.) - Peter Luschny, Feb 15 2021
Patrick J. Burchell (see link) describes the following method: To get the k-th row of the triangle write the nonnegative integers with a fixed exponent k as a sequence, 0^k, 1^k, 2^k, ..., and then apply the first differences to them k + 1 times. - Peter Luschny, Apr 02 2023

Examples

			The triangle T(n, k) begins:
  n\k 0 1    2     3      4       5       6      7     8    9 10...
  0:  1
  1:  0 1
  2:  0 1    1
  3:  0 1    4     1
  4:  0 1   11    11      1
  5:  0 1   26    66     26       1
  6:  0 1   57   302    302      57       1
  7:  0 1  120  1191   2416    1191     120      1
  8:  0 1  247  4293  15619   15619    4293    247     1
  9:  0 1  502 14608  88234  156190   88234  14608   502    1
 10:  0 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
...  Reformatted. - _Wolfdieter Lang_, Feb 14 2015
------------------------------------------------------------------
The width statistic over permutations, n=4.
  [1, 2, 3, 4] => 3; [1, 2, 4, 3] => 2; [1, 3, 2, 4] => 2; [1, 3, 4, 2] => 2;
  [1, 4, 2, 3] => 2; [1, 4, 3, 2] => 1; [2, 1, 3, 4] => 3; [2, 1, 4, 3] => 2;
  [2, 3, 1, 4] => 2; [2, 3, 4, 1] => 3; [2, 4, 1, 3] => 2; [2, 4, 3, 1] => 2;
  [3, 1, 2, 4] => 3; [3, 1, 4, 2] => 3; [3, 2, 1, 4] => 2; [3, 2, 4, 1] => 3;
  [3, 4, 1, 2] => 3; [3, 4, 2, 1] => 2; [4, 1, 2, 3] => 4; [4, 1, 3, 2] => 3;
  [4, 2, 1, 3] => 3; [4, 2, 3, 1] => 3; [4, 3, 1, 2] => 3; [4, 3, 2, 1] => 2;
Gives row(4) = [0, 1, 11, 11, 1]. - _Peter Luschny_, Dec 09 2015
------------------------------------------------------------------
From _Wolfdieter Lang_, Apr 03 2017: (Start)
Recurrence: T(5, 3) = (6-3)*T(4, 2) + 3*T(4, 3) = 3*11 + 3*11 = 66.
O.g.f. column k=2: (x/(1 - 2*x))*E_x*(x/(1-x)) = (x/(1-x))^2/(1-2*x).
E.g.f. column k=2: A(2, x) = x*A(1, x) + x*E(1, x) = x*1 + x*(exp(x)-1) = x*exp(x), hence E(2, x) = (1 + int(x*exp(-x),x ))*exp(2*x) = exp(x)*(exp(x) - (1+x)). See A000295. (End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 245. [Roger L. Bagula, Nov 21 2009]
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed.; Addison-Wesley, 1994, p. 268, Row reversed table 268. - Wolfdieter Lang, Apr 03 2017
  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008

Crossrefs

See A008292 (subtriangle for k>=1 and n>=1), which is the main entry for these numbers. Another version has the zeros at the ends of the rows, as in Concrete Mathematics: see A173018.
T(2n,n) gives A180056.

Programs

  • Haskell
    a123125 n k = a123125_tabl !! n !! k
    a123125_row n = a123125_tabl !! n
    a123125_tabl = [1] : zipWith (:) [0, 0 ..] a008292_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Maple
    gf := 1/(1 - t*exp(x)): ser := series(gf, x, 12):
    cx := n -> (-1)^(n + 1)*factor(n!*coeff(ser, x, n)*(t - 1)^(n + 1)):
    seq(print(seq(coeff(cx(n), t, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 11 2021
    A123125 := proc(n, k) option remember; if k = n then 1 elif k <= 0 or k > n then 0 else k*procname(n-1, k) + (n-k+1)*procname(n-1, k-1) fi end:
    seq(print(seq(A123125(n, k), k=0..n)), n=0..10); # Peter Luschny, Mar 28 2021
    # Alternative (Patrick J. Burchell):
    t := a -> Statistics:-Difference([0, a]): Trow := k -> (t@@(k+1))([seq(n^k, n = 0..k)]):
    seq(print(Trow(n)), n = 0..6); # Peter Luschny, Apr 02 2023
  • Mathematica
    f[x_, n_] := f[x, n] = (1 - x)^(n + 1)*Sum[k^n*x^k, {k, 0, Infinity}];
    Table[CoefficientList[f[x, n], x], {n,0,9}] // Flatten (* Roger L. Bagula, Aug 14 2008 *)
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = (n-k) t[n-1, k-1] + (k+1) t[n-1, k]; T[n_, k_] := t[n, n-k];
    Table[T[n, k], {n,0,10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019 *)
    A123125[n_, k_] := Sum[(-1)^j*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
    Table[A123125[n, k], {n, 0, 9}, {k, 0, n}] // TableForm  (* Peter Luschny, Aug 12 2022 *)
  • Python
    from math import isqrt, comb
    def A123125(n):
        a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1))
        b = comb(a+1,2)-n
        return sum(-(b-j)**(a-1)*comb(a,j) if j&1 else (b-j)**(a-1)*comb(a,j) for j in range(b)) # Chai Wah Wu, Nov 13 2024
  • Sage
    def statistic_eulerian(pi):
        if not pi: return 0
        h, i, branch, next = 0, len(pi), [0], pi[0]
        while True:
            while next < branch[len(branch)-1]:
                del(branch[len(branch)-1])
            current = 0
            h += 1
            while next > current:
                i -= 1
                if i == 0: return h
                branch.append(next)
                current, next = next, pi[i]
    def A123125_row(n):
        L = [0]*(n+1)
        for p in Permutations(n):
            L[statistic_eulerian(p)] += 1
        return L
    [A123125_row(n) for n in range(7)] # Peter Luschny, Dec 09 2015
    

Formula

Sum_{k=0..n} T(n,k) = n! = A000142(n).
Sum_{k=0..n} 2^k*T(n,k) = A000629(n).
Sum_{k=0..n} 3^k*T(n,k) = abs(A009362(n+1)).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A000670(n).
Sum_{k=0..n} T(n,k)*3^(n-k) = A122704(n). - Philippe Deléham, Nov 07 2007
G.f.: f(x,n) = (1 - x)^(n + 1)*Sum_{k>=0} k^n*x^k. - Roger L. Bagula and Gary W. Adamson, Aug 14 2008. f is not the g.f. of the triangle, it is the polynomial of row n. See an Apr 03 2017 comment above - Wolfdieter Lang, Apr 03 2017
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000629(n), A123227(n), A201355(n), A201368(n) for x = 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Dec 01 2011
E.g.f. (1-t)/(1-t*exp((1-t)x)). A123125 * A007318 = A130850 = unsigned A075263, related to reversed A028246. A007318 * A123125 = A046802. Evaluating the row polynomials at -1, giving the alternating-sign row sum, generates A009006. - Tom Copeland, Oct 14 2015
From Wolfdieter Lang, Apr 03 2017: (Start)
T(n, k) = A173018(n, n-k), 0 <= k <= n. Row reversed Euler's triangle. See Graham et al., p. 268.
Recurrence (from A173018): T(n, 0) = 1 if n=0 else 0; T(n, k) = 0 if n < k and T(n, k) = (n+1-k)*T(n-1, k-1) + k*T(n-1, k) else.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n-j, k-j)*S2(n, j)*j!, 0 <= k <= n, else 0. For S2(n, k)*k! see A131689.
The recurrence for the o.g.f. of the sequence of column k is
G(k, x) = (x/(1 - k*x))*(E_x - (k-2))*G(k-1, x), with the Euler operator E_x = x*d_x, for k >= 1, with G(0, x) = 1. (Proof from the recurrence of T(n, k)).
The e.g.f of the sequence of column k is found from E(k, x) = (1 + int(A(k, x),x)*exp(-k*x))*exp(k*x), k >= 1, with the recurrence
A(k, x) = x*A(k-1, x) +(1 + (1-k)*(1-x))*E(k-1, x) for k >= 1, with A(0,x)= 0. (Proof from the recurrence of T(n, k)). (End)
T(n, k) = Sum_{j=0..n-k} (-1)^j*(n-j-k+1)^n*binomial(n + 1, j). - Peter Luschny, Aug 12 2022
G.f.: Sum_{m >= 0} x^m/(1/(1-x)-m*t). - Mamuka Jibladze, Mar 12 2025

A008517 Second-order Eulerian triangle T(n,k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 8, 6, 1, 22, 58, 24, 1, 52, 328, 444, 120, 1, 114, 1452, 4400, 3708, 720, 1, 240, 5610, 32120, 58140, 33984, 5040, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 1

Views

Author

Keywords

Comments

Second-order Eulerian numbers <> = T(n,k+1) count the permutations of the multiset {1,1,2,2,...,n,n} with k ascents with the restriction that for all m, all integers between the two copies of m are less than m. In particular, the two 1s are always next to each other.
When seen as coefficients of polynomials with descending exponents, evaluations are in A000311 (x=2) and A001662 (x=-1).
The row reversed triangle is A112007. There one can find comments on the o.g.f.s for the diagonals of the unsigned Stirling1 triangle |A008275|.
Stirling2(n,n-k) = Sum_{m=0..k-1} T(k,m+1)*binomial(n+k-1+m, 2*k), k>=1. See the Graham et al. reference p. 271 eq. (6.43).
This triangle is the coefficient triangle of the numerator polynomials appearing in the o.g.f. for the k-th diagonal (k >= 1) of the Stirling2 triangle A048993.
The o.g.f. for column k satisfies the recurrence G(k,x) = x*(2*x*(d/dx)G(k-1,x) + (2-k)*G(k-1,x))/(1-k*x), k >= 2, with G(1,x) = 1/(1-x). - Wolfdieter Lang, Oct 14 2005
This triangle is in some sense generated by the differential equation y' = 1 - 2/(1+x+y). (This is the differential equation satisfied by the function defined implicitly as x+y=exp(x-y).) If we take y = a(0) + a(1)x + a(2)x^2 + a(3)x^3 + ... and assume a(0)=c then all the a's may be calculated formally in terms of c and we have a(1) = (c-1)/(c+1) and, for n > 1, a(n) = 2^n/n! (1+c)^(1-2n)( T(n,1)c - T(n,2)c^2 + T(n,3)c^3 - ... + (-1)^(n-1) T(n,n)c^n ). - Moshe Shmuel Newman, Aug 08 2007
From the recurrence relation, the generating function F(x,y) := 1 + Sum_{n>=1, 1<=k<=n} [T(n,k)x^n/n!*y^k] satisfies the partial differential equation F = (1/y-2x)F_x + (y-1)F_y, with (non-elementary) solution F(x,y) = (1-y)/(1-Phi(w)) where w = y*exp(x(y-1)^2-y) and Phi(x) is defined by Phi(x) = x*exp(Phi(x)). By Lagrange inversion (see Wilf's book "generatingfunctionology", page 168, Example 1), Phi(x) = Sum_{n>=1} n^(n-1)*x^n/n!. Thus Phi(x) can alternatively be described as the e.g.f. for rooted labeled trees on n vertices A000169. - David Callan, Jul 25 2008
A method for solving PDEs such as the one above for F(x,y) is described in the Klazar reference (see pages 207-208). In his case, the auxiliary ODE dy/dx = b(x,y)/a(x,y) is exact; in this case it is not exact but has an integrating factor depending on y alone, namely y-1. The e.g.f. for the row sums A001147 is 1/sqrt(1-2*x) and the demonstration that F(x,1) = 1/sqrt(1-2*x) is interesting: two applications of l'Hopital's rule to lim_{y->1}F(x,y) yield F(x,1) = 1/(1-2x)*1/F(x,1). So l'Hopital's rule doesn't directly yield F(x,1) but rather an equation to be solved for F(x,1)!. - David Callan, Jul 25 2008
From Tom Copeland, Oct 12 2008; May 19 2010: (Start)
Let P(0,t)= 0, P(1,t)= 1, P(2,t)= t, P(3,t)= t + 2 t^2, P(4,t)= t + 8 t^2 + 6 t^3, ... be the row polynomials of the present array, then
exp(x*P(.,t)) = ( u + Tree(t*exp(u)) ) / (1-t) = WD(x*(1-t), t/(1-t)) / (1-t)
where u = x*(1-t)^2 - t, Tree(x) is the e.g.f. of A000169 and WD(x,t) is the e.g.f. for A134991, relating the Ward and 2-Eulerian polynomials by a simple transformation.
Note also apparently P(4,t) / (1-t)^3 = Ward Poly(4, t/(1-t)) = essentially an e.g.f. for A093500.
The compositional inverse of f(x,t) = exp(P(.,t)*x) about x=0 is
g(x,t) = ( x - (t/(1-t)^2)*(exp(x*(1-t))-x*(1-t)-1) )
= x - t*x^2/2! - t*(1-t)*x^3/3! - t*(1-t)^2*x^4/4! - t*(1-t)^3*x^5/5! - ... .
Can apply A134685 to these coefficients to generate f(x,t). (End)
Triangle A163936 is similar to the one given above except for an extra right hand column [1, 0, 0, 0, ... ] and that its row order is reversed. - Johannes W. Meijer, Oct 16 2009
From Tom Copeland, Sep 04 2011: (Start)
Let h(x,t) = 1/(1-(t/(1-t))*(exp(x*(1-t))-1)), an e.g.f. in x for row polynomials in t of A008292, then the n-th row polynomial in t of the table A008517 is given by ((h(x,t)*D_x)^(n+1))x with the derivative evaluated at x=0.
Also, df(x,t)/dx = h(f(x,t),t) where f(x,t) is an e.g.f. in x of the row polynomials in t of A008517, i.e., exp(x*P(.,t)) in Copeland's 2008 comment. (End)
The rows are the h-vectors of A134991. - Tom Copeland, Oct 03 2011
Hilbert series of the pre-WDVV ring, thus h-vectors of the Whitehouse simplicial complex (cf. Readdy, Table 1). - Tom Copeland, Sep 20 2014
Arises in Buckholtz's analysis of the error term in the series for exp(nz). - N. J. A. Sloane, Jul 05 2016

Examples

			Triangle begins:
  1;
  1,   2;
  1,   8,   6;
  1,  22,  58,  24;
  1,  52, 328, 444, 120; ...
Row 3: There are three plane increasing 0-1-2-3 trees on 3 vertices. The number of colors are shown to the right of a vertex.
.
    1o (2*t+1)         1o t*(t+2)      1o t*(t+2)
     |                 / \             / \
     |                /   \           /   \
    2o (2*t+1)      2o    3o        3o    2o
     |
     |
    3o
.
The total number of trees is (2*t+1)^2 + t*(t+2) + t*(t+2) = 1 + 8*t + 6*t^2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. [with offsets [0,0]: see A201637]

Crossrefs

Columns include A005803, A004301, A006260.
Right-hand columns include A000142, A002538, A002539.
Row sums are A001147.
For a (0,0) based version as used in 'Concrete Mathematics' and by Maple see A201637. For a (0,0) based version which has this triangle as a subtriangle see A340556.

Programs

  • Maple
    with(combinat): A008517 := proc(n, m) local k: add((-1)^(n+k)* binomial(2*n+1, k)* stirling1(2*n-m-k+1, n-m-k+1), k=0..n-m) end: seq(seq(A008517(n, m), m=1..n), n=1..8);
    # Johannes W. Meijer, Oct 16 2009, revised Nov 22 2012
    A008517 := proc(n,k) option remember; `if`(n=1,`if`(k=0,1,0), A008517(n-1,k)* (k+1) + A008517(n-1,k-1)*(2*n-k-1)) end: seq(print(seq(A008517(n,k), k=0..n-1)), n=1..9);
    # Peter Luschny, Apr 20 2011
  • Mathematica
    a[n_, m_] = Sum[(-1)^(n + k)*Binomial[2 n + 1, k]*StirlingS1[2n-m-k+1, n-m-k+1], {k, 0, n-m}]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 44]] (* Jean-François Alcover, May 18 2011, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = my(z); if( n<1, 0, z = 1 + O(x); for( k=1, n, z = 1 + intformal( z^2 * (z+y-1))); n! * polcoeff( polcoeff(z, n),k))}; /* Michael Somos, Oct 13 2002 */
    
  • PARI
    {T(n,k)=polcoeff((1-x)^(2*n+1)*sum(j=0,2*n+1,j^(n+j)*x^j/j!*exp(-j*x +x*O(x^k))),k)} \\ Paul D. Hanna, Oct 31 2012
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n, m) = sum(k=0, n-m, (-1)^(n+k)*binomial(2*n+1, k)*stirling(2*n-m-k+1, n-m-k+1, 1)); \\ Michel Marcus, Dec 07 2021
    
  • Sage
    @CachedFunction
    def A008517(n, k):
        if n==1: return 1 if k==0 else 0
        return A008517(n-1,k)*(k+1)+A008517(n-1,k-1)*(2*n-k-1)
    for n in (1..9): [A008517(n, k) for k in(0..n-1)] # Peter Luschny, Oct 31 2012

Formula

T(n,k) = 0 if n < k, T(1,1) = 1, T(n,-1) = 0, T(n,k) = k*T(n-1,k) + (2*n-k)*T(n-1,k-1).
a(n,m) = Sum_{k=0..n-m} (-1)^(n+k)*binomial(2*n+1, k)*Stirling1(2*n-m-k+1, n-m-k+1). - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x-(1+2^k*t)*x^2/2+(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 1 and for the Eulerian numbers A008292 when k = 0.
Let v = -t*exp((1-t)^2*x-t) and let B(x,t) = -(1+1/t*LambertW(v))/(1+LambertW(v)). From the e.g.f. given by Copeland above we find B(x,t) = compositional inverse with respect to x of G(1,x,t) = Sum_{n>=1} R(n,t)*x^n/n! = x+(1+2*t)*x^2/2!+(1+8*t+6*t^2)*x^3/3!+.... The function B(x,t) satisfies the differential equation dB/dx = (1+B)*(1+t*B)^2 = 1 + (2*t+1)*B + t*(t+2)*B^2 + t^2*B^3.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees where each vertex has outdegree <= 3, the vertices of outdegree 1 come in 2*t+1 colors, the vertices of outdegree 2 come in t*(t+2) colors and the vertices of outdegree 3 come in t^2 colors. An example is given below. Cf. A008292. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x,t) = (1+x)*(1+t*x)^2 and let D be the operator f(x,t)*d/dx. Then R(n+1,t) = D^n(f(x,t)) evaluated at x = 0. (End)
From Tom Copeland, Oct 03 2011: (Start)
a(n,k) = Sum_{i=0..k} (-1)^(k-i) binomial(n-i,k-i) A134991(n,i), offsets 0.
P(n+1,t) = (1-t)^(2n+1) Sum_{k>=1} k^(n+k) [t*exp(-t)]^k / k! for n>0; consequently, Sum_{k>=1} (-1)^k k^(n+k) x^k/k!= [1+LW(x)]^(-(2n+1))P[n+1,-LW(x)] where LW(x) is the Lambert W-Function and P(n,t), for n > 0, are the row polynomials as given in Copeland's 2008 comment. (End)
The e.g.f. A(x,t) = -v * { Sum_{j>=1} D(j-1,u) (-z)^j / j! } where u=x*(1-t)^2-t, v=(1+u)/(1-t), z=(t+u)/[(1+u)^2] and D(j-1,u) are the polynomials of A042977. dA(x,t)/dx=(1-t)/[1+u-(1-t)A(x,t)]=(1-t)/{1+LW[-t exp(u)]}, (Copeland's e.g.f. in 2008 comment). - Tom Copeland, Oct 06 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
The compositional inverse (with respect to x) of y = y(t;x) = (x-t*(exp(x)-1)) is 1/(1-t)*y + t/(1-t)^3*y^2/2! + (t+2*t^2)/(1-t)^5*y^3/3! + (t+8*t^2+6*t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed in the Comments section, the rational functions in t are the generating functions for the diagonals of the triangle of Stirling numbers of the second kind (A048993). See the Bala link for a proof. Cf. A112007 and A134991. - Peter Bala, Dec 04 2011
O.g.f. of row n: (1-x)^(2*n+1) * Sum_{k>=0} k^(n+k) * exp(-k*x) * x^k/k!. - Paul D. Hanna, Oct 31 2012
T(n, k) = n!*[x^n][t^k](egf) where egf = (1-t)/(1 + LambertW(-exp(t^2*x - 2*t*x - t + x)*t)) and after expansion W(-exp(-t)t) is substituted by (-t). - Shamil Shakirov, Feb 17 2025

A002538 Second-order Eulerian numbers <>.

Original entry on oeis.org

1, 8, 58, 444, 3708, 33984, 341136, 3733920, 44339040, 568356480, 7827719040, 115336085760, 1810992556800, 30196376985600, 532953524275200, 9927928075161600, 194677319705702400, 4008789120817152000, 86495828444928000000, 1951566265951948800000, 45958933902500720640000
Offset: 1

Views

Author

Keywords

Comments

Second-order Eulerian numbers <> count permutations of the multiset {1,1,2,2,...,n,n} with k ascents and the restriction that for any m <= n, all numbers between the two copies of m are less than m.
a(n) = number of edges in the Hasse diagram for the Bruhat order on permutations of [n+1]. - David Callan, Sep 03 2005
Proof. As explained on page 1 of the Stanley link, edges in the Hasse diagram of the (strong) Bruhat order on S_n are associated with pairs (pi,(i,j)) with pi in S_n and 1 <= i < j <= n, such that pi_i < pi_j and each entry of pi lying between pi_i and pi_j in POSITION does not lie between pi_i and pi_j in VALUE.
For example, pi = (3, 5, 1, 2, 4) gives edges for the (i,j) pairs (1,2), (1,5), (3,4), (4,5) but not, e.g., for (i,j) = (3,5) because 2 lies between pi_3=1 and pi_5=4 both in position and in value.
Let us count edges for a given pair (i,j). Consider the j-i+1 entries pi_i, pi_(i+1),...,pi_j. There are (j-i+1)! possible orderings for their values and (i,j) contributes an edge <=> the values of pi_i, pi_j are adjacent in this ordering with pi_i < pi_j.
There are (j-i)! such orderings (just coalesce the items pi_i, pi_j into a single item). The net result is that (i,j) contributes an edge 1/(j-i+1) of the time. So the total number of edges in the Hasse diagram is Sum_{1 <= i < j <= n} n!/(j-i+1) = (n+1)!(H_(n+1) - 2) + n! where H_n = 1 + 1/2 + 1/3 + ... + 1/n is the harmonic sum. QED - David Callan, Mar 07 2006
Number of reentrant corners along the lower contours of all deco polyominoes of height n+2. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. a(n) = Sum_{k>=1} k*A121579(n+2,k). - Emeric Deutsch, Aug 16 2006
a(n) is the total sum of the cycle maxima minus the cycle minima over all permutations of [n+1]. a(2) = 8 = 2+2+1+2+1+0: (123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3). - Alois P. Heinz, Dec 22 2023
a(n-1) is the number of parking functions of order n with exactly n-1 lucky cars, where a lucky car is a car which parks in the spot it prefers. - Kimberly P. Hadaway, Jun 20 2024

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second diagonal of A008517 and second column of A112007.
Cf. A121579.

Programs

  • Magma
    [n le 1 select n else (n+2)*Self(n-1) + n*Factorial(n): n in [1..30]]; // Vincenzo Librandi, Aug 11 2018
  • Maple
    egf:= (x+2*log(1-x))/(x-1)^3:
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=1..21);  # Peter Luschny, Feb 12 2021
    # Alternative:
    a := n -> (n + 1)! * ((n + 2)*harmonic(n + 2) - 2*n - 3);
    seq(a(n), n = 1..22);  # Peter Luschny, Apr 09 2024
  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-1)^(n - k) k (-1)^(n - k) StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 1, 16}] (* Zerinvary Lajos, Jul 08 2009 *)
    a[n_]:=(-1)*((2*n+3)*(n+1)!-Abs[StirlingS1[n+3,2]]);Flatten[Table[a[n],{n,1,21}]] (* Detlef Meya, Apr 09 2024 *)
  • PARI
    N=66; x='x+O('x^66); Vec(serlaplace((x+2*log(1-x))/(x-1)^3)) \\ Joerg Arndt, Apr 09 2016
    

Formula

From Vladeta Jovovic, Sep 15 2003: (Start)
a(n) = Sum_{k=1..n} k * |Stirling1(n+2, k+2)|.
E.g.f.: (x+2*log(1-x))/(x-1)^3. (End)
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at -1. - Ralf Stephan, Apr 16 2004
a(n) = (n+2)*a(n-1) + n*n!, n>=1, a(0):=0.
a(n) = (n+2)!*HarmonicSum(n+2) + (n+1)! - 2(n+2)! where HarmonicSum(n) = 1 + 1/2 + 1/3 + ... + 1/n. - David Callan, Mar 07 2006
a(n) = (n+1)!*((n+2)*h(n+2)-2*n-3) where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Mar 25 2011
Conjecture: a(n) + 2*(-n-2)*a(n-1) + (n^2+4*n+1)*a(n-2) - n*(n-1)*a(n-3) = 0. - R. J. Mathar, Oct 27 2014
a(n) = (-1)*((2*n + 3)*(n + 1)! - abs(Stirling1(n + 3, 2))). - Detlef Meya, Apr 09 2024

Extensions

More terms from Joerg Arndt, Apr 09 2016

A000505 Eulerian numbers (Euler's triangle: column k=5 of A008292, column k=4 of A173018).

Original entry on oeis.org

1, 57, 1191, 15619, 156190, 1310354, 9738114, 66318474, 423281535, 2571742175, 15041229521, 85383238549, 473353301060, 2575022097600, 13796160184500, 73008517581444, 382493246941965, 1987497491971605, 10258045633638475
Offset: 5

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of permutations of n letters with exactly 4 descents. - Neven Juric, Jan 21 2010

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed Euler's triangle).
Cf. A000012, A000460, A000498 (columns for smaller k).

Programs

  • Magma
    [5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5): n in [5..25]]; // G. C. Greubel, Oct 23 2017
  • Mathematica
    k = 5; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 19}] (* Michael De Vlieger, Aug 04 2015, after PARI at A001243 *)
    a[n_] := 5^n - 2^(n-1)*n*(n^2-1)/3 - 4^n*(n+1) + 3^n*n*(n+1)/2 + (n-2)* (n-1)*n*(n+1)/24; Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    A(n)=5^(n+4)-(n+5)*4^(n+4)+1/2*(n+4)*(n+5)*3^(n+4)-1/6*(n+3)*(n+4)*(n+5)*2^(n+4)+1/24*(n+2)*(n+3)*(n+4)*(n+5)
    

Formula

a(n) = 5^(n + 4) - (n + 5)*4^(n + 4) + (1/2)*(n + 4)*(n + 5)*3^(n + 4) - (1/6)*(n + 3)*(n + 4)*(n + 5)*2^(n + 4) + (1/24)*(n + 2)*(n + 3)*(n + 4)*(n + 5). - Randall L Rathbun, Jan 22 2002
E.g.f.: (1/24)*exp(x)*(x^4 + 8*x^3 + 12*x^2) - 4*exp(2*x)*(2*x^3/3 + 2*x^2 + x) + 3*exp(3*x)*(9*x^2/2 + 6*x + 1) - 8*exp(4*x)*(2*x + 1) + 5*exp(5*x). - Wenjin Woan, Oct 21 2007
G.f.: (1 + 22*x - 244*x^2 + 422*x^3 + 2575*x^4 - 12012*x^5 + 17828*x^6 - 5664*x^7 - 9552*x^8 + 6912*x^9)*(x/(1-x))^5 / Product_{j=1..4} (1 - (6-j)*x)^j. See the recurrence given in an Apr 03 2017 comment on A123125. - Wolfdieter Lang, Apr 03 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A002539 Eulerian numbers of the second kind: <>.

Original entry on oeis.org

1, 22, 328, 4400, 58140, 785304, 11026296, 162186912, 2507481216, 40788301824, 697929436800, 12550904017920, 236908271543040, 4687098165573120, 97049168010017280, 2099830209402931200, 47405948832458496000, 1115089078488795648000, 27290469545695931904000, 694002594415741341696000
Offset: 0

Views

Author

Keywords

Comments

Eulerian permutations of the multiset {1,1,2,2,...,n+3,n+3} with n ascents.Eulerian permutations have the restriction that for all m, all integers between the two copies of m are less than m. In particular, the two 1s are always next to each other.
The sequence gives the Eulerian numbers <<3,0>>, <<4,1>>, <<5,2>>, <<6,3>>, ... (and in particular the offset is 0).

Examples

			For instance, a(1) = 22 because among the 7!! = 105 permutations of {1,1,2,2,3,3,4,4} selected according to the definition of Eulerian numbers of the second kind, only 22 contain n = 1 descent, namely : 11223443, 11224433, 11233244, 11233442, 11244233, 11332244, 11334422, 11442233, 12213344, 12233144, 12233441, 12244133, 13312244, 13344122, 14412233, 22113344, 22331144, 22334411, 22441133, 33112244, 33441122, 44112233. - _Jean-François Alcover_, Mar 28 2011
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd edition; Addison-Wesley, 1994, pp. 270-271.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

3rd diagonal of A008517, third column of A112007.

Programs

  • Mathematica
    b[1]=1; b[2]=22; b[n_] := b[n] = ((n-1)*(n-1)!*n^3 - (n+2)*(n+3)*b[n-2]*n + (n*(2*n+5)-4)*b[n-1]) / (n-1); a[n_] := b[n+1]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 23 2011, updated Oct 12 2015 *)
  • PARI
    {a=vector(30,n,1);a[2]=22;for(n=3,#a,a[n]=(n-1)!*n^3+((n*(2*n+5)-4)*a[n-1] - n*(n+2)*(n+3)*a[n-2])/(n-1));a} \\ Uses offet 1 for technical reasons. - M. F. Hasler, Sep 19 2015

Formula

a(n)= (n+5)*a(n-1) + (n+1)*A002538(n+1), n>=1, a(0)=1.
Recurrence: (n-1)*n^2*a(n) = (n-1)*(3*n^3 + 12*n^2 + 6*n + 1)*a(n-1) - (n+1)*(3*n^4 + 15*n^3 + 13*n^2 - 15*n - 4)*a(n-2) + n*(n+1)^3*(n+2)*(n+3)*a(n-3). - Vaclav Kotesovec, May 24 2014
a(n) ~ n! * n^5 * log(n) * (log(n)*(1/2+181/(24*n)) + gamma*(1+181/(12*n)) - 2 - 65/(3*n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, May 24 2014

Extensions

Formulas adapted for offset 0 by Vaclav Kotesovec, May 24 2014
More terms from M. F. Hasler, Sep 19 2015

A000514 Eulerian numbers (Euler's triangle: column k=6 of A008292, column k=5 of A173018).

Original entry on oeis.org

1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928, 782115518299, 5717291972382, 40457344748072, 278794377854832, 1879708669896492, 12446388300682056, 81180715002105741, 522859244868123336, 3332058336247871041
Offset: 6

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed version of A173018).
Cf. A000012, A000460, A000498, A000505 (columns for smaller k).

Programs

  • Mathematica
    k = 6; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 17}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A000514(n)=6^(n+6-1)+sum(i=1,6-1,(-1)^i/i!*(6-i)^(n+6-1)*prod(j=1,i,n+6+1-j))
    
  • PARI
    x='x+O('x^50); Vec(serlaplace((1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) -540*x^2*(1+x)*exp(3*x) +80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)))) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = 6^(n+6-1) + Sum_{i=1..6-1} ((-1)^i/i!)*(6-i)^(n+6-1)*Product_{j=1..i} (n+6+1-j). - Randall L Rathbun, Jan 23 2002
E.g.f.: (1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) - 540*x^2*(1+x)*exp(3*x) + 80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)). - Wenjin Woan, Oct 25 2007 (Corrected by G. C. Greubel, Oct 24 2017)
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 03 2017

Extensions

More terms from Christian G. Bower, May 12 2000

A001243 Eulerian numbers (Euler's triangle: column k=7 of A008292, column k=6 of A173018).

Original entry on oeis.org

1, 247, 14608, 455192, 9738114, 162512286, 2275172004, 27971176092, 311387598411, 3207483178157, 31055652948388, 285997074307300, 2527925001876036, 21598596303099900, 179385804170146680
Offset: 7

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
Cf. A000012, A000460, A000498, A000505, A000514 (columns for smaller k).

Programs

  • Magma
    [EulerianNumber(n,6): n in [7..40]]; // G. C. Greubel, Dec 30 2024
    
  • Mathematica
    k = 7; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A001243(n)=7^(n+7-1)+sum(i=1,7-1,(-1)^i/i!*(7-i)^(n+7-1)*prod(j=1,i,n+7+1-j))
    
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    print([eulerian_number(n,6) for n in range(7,41)]) # G. C. Greubel, Dec 30 2024

Formula

a(n) = 7^(n+7-1) + Sum_{i=1..7-1} ((-1)^i/i!)*(7-i)^(n+7-1) * Product_{j=1..i} (n+7+1 - j). - Randall L Rathbun, Jan 23 2002
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 19 2017
a(n) = 7^(n+6) + Sum_{j=1..6} (-1)^j*binomial(n+7, j)*(7-j)^(n+6). - G. C. Greubel, Dec 30 2024

Extensions

More terms from Christian G. Bower, May 12 2000

A001244 Eulerian numbers (Euler's triangle: column k=8 of A008292, column k=7 of A173018).

Original entry on oeis.org

1, 502, 47840, 2203488, 66318474, 1505621508, 27971176092, 447538817472, 6382798925475, 83137223185370, 1006709967915228, 11485644635009424, 124748182104463860, 1300365805079109480, 13093713503185076040
Offset: 8

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
For the general computation of the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 03 2017

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 2601.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
Cf. A123125 (row reversed version of A173018).
Cf. A000012, A000460, A000498, A000505, A000514, A001243 (columns for smaller k).

Programs

  • Magma
    A001244:= func< n | EulerianNumber(n,7) >;
    [A001244(n): n in [8..40]]; // G. C. Greubel, Dec 31 2024
    
  • Mathematica
    k = 8; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A001244(n)=8^(n+8-1)+sum(i=1,8-1,(-1)^i/i!*(8-i)^(n+8-1)*prod(j=1,i,n+8+1-j))
    
  • Python
    from sage.combinat.combinat import eulerian_number
    print([eulerian_number(n,7) for n in range(8,41)]) # G. C. Greubel, Dec 31 2024

Formula

a(n) = 8^(n+8-1) + Sum_{i=1..8-1} ((-1)^i/i!)*(8-i)^(n+8-1) * Product_{j=1..i} (n+8+1 - j). - Randall L Rathbun, Jan 23 2002
a(n) = k^n + Sum_{j=1..k-1} (-1)^j*binomial(n+1,j)*(k-j)^n, with k = 8, for n >= 8. - G. C. Greubel, Dec 31 2024

Extensions

More terms from Christian G. Bower, May 12 2000
Showing 1-10 of 16 results. Next