Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 58, 58, 1, 1, 244, 512, 244, 1, 1, 994, 3592, 3592, 994, 1, 1, 4016, 23756, 38592, 23756, 4016, 1, 1, 16174, 154420, 374728, 374728, 154420, 16174, 1, 1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1, 1, 260842, 6314368
Offset: 0
{1},
{1, 1},
{1, 12, 1},
{1, 58, 58, 1},
{1, 244, 512, 244, 1},
{1, 994, 3592, 3592, 994, 1},
{1, 4016, 23756, 38592, 23756, 4016, 1},
{1, 16174, 154420, 374728, 374728, 154420, 16174, 1},
{1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1},
{1, 260842, 6314368, 32773312, 62896480, 62896480, 32773312, 6314368, 260842, 1},
{1, 1045480, 39684596, 299673344, 779048096, 1006350848, 779048096, 299673344, 39684596, 1045480, 1}
-
Clear[t, p, q, n, m];
p = 2; q = 1;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
A154694
Triangle read by rows: T(n,k) = ((3/2)^k*2^n + (2/3)^k*3^n)*A008292(n+1,k+1).
Original entry on oeis.org
2, 5, 5, 13, 48, 13, 35, 330, 330, 35, 97, 2028, 4752, 2028, 97, 275, 11970, 54360, 54360, 11970, 275, 793, 69840, 557388, 1043712, 557388, 69840, 793, 2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315, 6817, 2388516, 51011136, 247761072, 404844480, 247761072, 51011136, 2388516, 6817
Offset: 0
Triangle begins as:
2;
5, 5;
13, 48, 13;
35, 330, 330, 35;
97, 2028, 4752, 2028, 97;
275, 11970, 54360, 54360, 11970, 275;
793, 69840, 557388, 1043712, 557388, 69840, 793;
2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315;
-
A154694:= func< n,k | (2^(n-k)*3^k+2^k*3^(n-k))*EulerianNumber(n+1, k) >;
[A154694(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154694 := proc(n,m)
(3^m*2^(n-m)+2^m*3^(n-m))*A008292(n+1,m+1) ;
end proc:
seq(seq( A154694(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
-
T[n_, k_, p_, q_] := (p^(n - k)*q^k + p^k*q^(n - k))*Eulerian[n+1,k];
Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten
-
from sage.all import *
from sage.combinat.combinat import eulerian_number
def A154694(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*eulerian_number(n+1,k)
print(flatten([[A154694(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
Definition simplified by the Assoc. Eds. of the OEIS, Jun 07 2010
A174673
Triangle read by rows: T(n,m)=A154694(n,m)-A154694(n,0)+1.
Original entry on oeis.org
1, 1, 1, 1, 36, 1, 1, 296, 296, 1, 1, 1932, 4656, 1932, 1, 1, 11696, 54086, 54086, 11696, 1, 1, 69048, 556596, 1042920, 556596, 69048, 1, 1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1, 1, 2381700, 51004320, 247754256, 404837664
Offset: 0
{1},
{1, 1},
{1, 36, 1},
{1, 296, 296, 1},
{1, 1932, 4656, 1932, 1},
{1, 11696, 54086, 54086, 11696, 1},
{1, 69048, 556596, 1042920, 556596, 69048, 1},
{1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1},
{1, 2381700, 51004320, 247754256, 404837664, 247754256, 51004320, 2381700, 1},
{1, 14050376, 473595806, 3441231326, 8491073726, 8491073726, 3441231326, 473595806, 14050376, 1},
{1, 83216400, 4357421004, 46167420504, 164067684600, 244543444824, 164067684600, 46167420504, 4357421004, 83216400, 1}
-
A174673 := proc(n,m)
A154694(n,m)-A154694(n,0)+1 ;
end proc:
seq(seq( A174673(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
-
Clear[t, p, q, n, m];
p = 2; q = 3;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
Offset: 0
{1},
{1, 1},
{1, 20, 1},
{1, 130, 130, 1},
{1, 744, 1824, 744, 1},
{1, 4234, 20152, 20152, 4234, 1},
{1, 24484, 210796, 376704, 210796, 24484, 1},
{1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1},
{1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1},
{1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1},
{1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 1;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Original entry on oeis.org
1, 1, 1, 1, 60, 1, 1, 656, 656, 1, 1, 5832, 16464, 5832, 1, 1, 49496, 302486, 302486, 49496, 1, 1, 419412, 4933332, 10171944, 4933332, 419412, 1, 1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1, 1, 31167600, 1157982288
Offset: 0
{1},
{1, 1},
{1, 60, 1},
{1, 656, 656, 1},
{1, 5832, 16464, 5832, 1},
{1, 49496, 302486, 302486, 49496, 1},
{1, 419412, 4933332, 10171944, 4933332, 419412, 1},
{1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1},
{1, 31167600, 1157982288, 6978681888, 12117629472, 6978681888, 1157982288, 31167600, 1},
{1, 273237776, 17387745806, 164112248126, 449798124926, 449798124926, 164112248126, 17387745806, 273237776, 1},
{1, 2414712204, 260247533196, 3735760480536, 15279843395064, 23749342002264, 15279843395064, 3735760480536, 260247533196, 2414712204, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 3;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Showing 1-5 of 5 results.
Comments