A174673
Triangle read by rows: T(n,m)=A154694(n,m)-A154694(n,0)+1.
Original entry on oeis.org
1, 1, 1, 1, 36, 1, 1, 296, 296, 1, 1, 1932, 4656, 1932, 1, 1, 11696, 54086, 54086, 11696, 1, 1, 69048, 556596, 1042920, 556596, 69048, 1, 1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1, 1, 2381700, 51004320, 247754256, 404837664
Offset: 0
{1},
{1, 1},
{1, 36, 1},
{1, 296, 296, 1},
{1, 1932, 4656, 1932, 1},
{1, 11696, 54086, 54086, 11696, 1},
{1, 69048, 556596, 1042920, 556596, 69048, 1},
{1, 405236, 5406866, 16866206, 16866206, 5406866, 405236, 1},
{1, 2381700, 51004320, 247754256, 404837664, 247754256, 51004320, 2381700, 1},
{1, 14050376, 473595806, 3441231326, 8491073726, 8491073726, 3441231326, 473595806, 14050376, 1},
{1, 83216400, 4357421004, 46167420504, 164067684600, 244543444824, 164067684600, 46167420504, 4357421004, 83216400, 1}
-
A174673 := proc(n,m)
A154694(n,m)-A154694(n,0)+1 ;
end proc:
seq(seq( A174673(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
-
Clear[t, p, q, n, m];
p = 2; q = 3;
t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
A154693
Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).
Original entry on oeis.org
2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0
The triangle begins as:
2;
3, 3;
5, 16, 5;
9, 66, 66, 9;
17, 260, 528, 260, 17;
33, 1026, 3624, 3624, 1026, 33;
65, 4080, 23820, 38656, 23820, 4080, 65;
129, 16302, 154548, 374856, 374856, 154548, 16302, 129;
257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3)
-
A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >;
[A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
-
p=2; q=1;
A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
from sage.combinat.combinat import eulerian_number
def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k)
print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
Offset: 0
{1},
{1, 1},
{1, 20, 1},
{1, 130, 130, 1},
{1, 744, 1824, 744, 1},
{1, 4234, 20152, 20152, 4234, 1},
{1, 24484, 210796, 376704, 210796, 24484, 1},
{1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1},
{1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1},
{1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1},
{1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 1;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Original entry on oeis.org
1, 1, 1, 1, 60, 1, 1, 656, 656, 1, 1, 5832, 16464, 5832, 1, 1, 49496, 302486, 302486, 49496, 1, 1, 419412, 4933332, 10171944, 4933332, 419412, 1, 1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1, 1, 31167600, 1157982288
Offset: 0
{1},
{1, 1},
{1, 60, 1},
{1, 656, 656, 1},
{1, 5832, 16464, 5832, 1},
{1, 49496, 302486, 302486, 49496, 1},
{1, 419412, 4933332, 10171944, 4933332, 419412, 1},
{1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1},
{1, 31167600, 1157982288, 6978681888, 12117629472, 6978681888, 1157982288, 31167600, 1},
{1, 273237776, 17387745806, 164112248126, 449798124926, 449798124926, 164112248126, 17387745806, 273237776, 1},
{1, 2414712204, 260247533196, 3735760480536, 15279843395064, 23749342002264, 15279843395064, 3735760480536, 260247533196, 2414712204, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 3;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Showing 1-4 of 4 results.
Comments