A144387
Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).
Original entry on oeis.org
2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0
Triangle begins
2;
2, 1;
2, -1, 4;
2, -3, 5, 3;
2, -5, 8, -2, 8;
2, -7, 13, -10, 10, 5;
2, -9, 20, -23, 20, -5, 12;
2, -11, 29, -43, 43, -25, 17, 7;
2, -13, 40, -72, 86, -68, 42, -10, 16;
2, -15, 53, -112, 158, -154, 110, -52, 26, 13;
2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144400,
A174128.
-
p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
A144400
Triangle read by rows: row n (n > 0) gives the coefficients of x^k (0 <= k <= n - 1) in the expansion of Sum_{j=0..n} A000931(j+4)*binomial(n, j)*x^(j - 1)*(1 - x)^(n - j).
Original entry on oeis.org
1, 2, -1, 3, -3, 1, 4, -6, 4, 0, 5, -10, 10, 0, -3, 6, -15, 20, 0, -18, 10, 7, -21, 35, 0, -63, 70, -24, 8, -28, 56, 0, -168, 280, -192, 49, 9, -36, 84, 0, -378, 840, -864, 441, -89, 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145, 11, -55, 165, 0
Offset: 1
Triangle begins:
1;
2, -1;
3, -3, 1;
4, -6, 4, 0;
5, -10, 10, 0, -3;
6, -15, 20, 0, -18, 10;
7, -21, 35, 0, -63, 70, -24;
8, -28, 56, 0, -168, 280, -192, 49;
9, -36, 84, 0, -378, 840, -864, 441, -89;
10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 22 2018
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144387,
A174128.
-
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]];
p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
-
@CachedFunction
def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3)
def p(n,x): return sum( binomial(n,j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
A174128
Irregular triangle read by rows: row n (n > 0) is the expansion of Sum_{m=1..n} A001263(n,m)*x^(m - 1)*(1 - x)^(n - m).
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 3, -3, 1, 6, -4, -4, 2, 1, 10, 0, -20, 10, 1, 15, 15, -55, 15, 15, -5, 1, 21, 49, -105, -35, 105, -35, 1, 28, 112, -140, -266, 364, -56, -56, 14, 1, 36, 216, -84, -882, 756, 336, -504, 126, 1, 45, 375, 210, -2100, 672, 2520, -2100, 210, 210, -42
Offset: 1
Triangle begins
1;
1;
1, 1, -1;
1, 3, -3;
1, 6, -4, -4, 2;
1, 10, 0, -20, 10;
1, 15, 15, -55, 15, 15, -5;
1, 21, 49, -105, -35, 105, -35;
1, 28, 112, -140, -266, 364, -56, -56, 14;
1, 36, 216, -84, -882, 756, 336, -504, 126;
...
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144387,
A144400.
-
p[x_, n_]:= p[x, n]= Sum[(Binomial[n, j]*Binomial[n, j-1]/n)*x^j*(1-x)^(n-j), {j, 1, n}]/x;
Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten
-
def p(n,x): return (1/(n*x))*sum( binomial(n,j)*binomial(n,j-1)*x^j*(1-x)^(n-j) for j in (1..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
A142073
Irregular triangle, T(n, k) = coefficients of p(x, n), where p(x, n) = (1-2*x)^(n+1) * Sum_{j>=0} j^n*(x/(1-x))^j, read by rows.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -4, 2, 1, 7, -16, 8, 1, 21, -28, -26, 48, -16, 1, 51, 32, -356, 408, -136, 1, 113, 492, -1774, 1072, 912, -1088, 272, 1, 239, 2592, -5008, -6656, 20736, -15872, 3968, 1, 493, 10628, -50, -94432, 154528, -57856, -45056, 39680, -7936, 1, 1003, 38768, 108820, -621352, 455608, 848384, -1538816, 884480, -176896
Offset: 0
Irregular triangle begins as:
1;
1, -1;
1, -1;
1, 1, -4, 2;
1, 7, -16, 8;
1, 21, -28, -26, 48, -16;
1, 51, 32, -356, 408, -136;
1, 113, 492, -1774, 1072, 912, -1088, 272;
1, 239, 2592, -5008, -6656, 20736, -15872, 3968;
1, 493, 10628, -50, -94432, 154528, -57856, -45056, 39680, -7936;
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
b:= func< n | n eq 0 select 0 else 2*Floor((n+1)/2) -1 >;
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j)^n: j in [0..k]]) >;
p:= func< n,x | (&+[Eulerian(n,j)*(x-1)^j: j in [0..n]]) >;
T:= func< n,k | Coefficient(R!( p(n,x) ), k) >;
[T(n,n-k): k in [0..b(n)], n in [0..m]]; // G. C. Greubel, May 26 2024
-
p[x_, n_]= If[n==0, 1, (1-2*x)^(n+1)*Sum[k^n*(x/(1-x))^k, {k,0, Infinity}]/x];
Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
-
m=12
def b(n): return 2*int((n+1)/2) - 1 + int(n==0)
def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in range(k+1))
def p(x,n): return sum(Eulerian(n,j)*(x-1)^j for j in range(n+1))
def T(n,k): return ( p(x,n) ).series(x, n+1).list()[k]
flatten([[T(n,n-k) for k in range(b(n)+1)] for n in range(m+1)]) # G. C. Greubel, May 26 2024
A143505
Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 11, 14, 23, 14, 11, 1, 1, 26, 70, 104, 139, 104, 70, 26, 1, 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1, 1, 120, 1197, 3016, 5970, 8568, 9549, 8568, 5970, 3016, 1197, 120, 1, 1, 247, 4300, 17101, 37105, 70474, 90069, 107241, 90069
Offset: 1
Triangle begins:
1;
1, 1, 1;
1, 4, 3, 4, 1;
1, 11, 14, 23, 14, 11, 1;
1, 26, 70, 104, 139, 104, 70, 26, 1;
1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
-
Table[CoefficientList[FullSimplify[ExpandAll[(1 - x - 1/x)^(n + 1)*x^(n - 1)*PolyLog[-n, x + 1/x]/(x + 1/x)]], x], {n, 1, 10}]//Flatten
A225678
Triangle read by rows, T(n,k) = sum_{j=0..n} (-1)^(n+k+j) A(n,j)*C(j,n-k), A(n,j) the Eulerian numbers; n >= 0, k >= 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 1, 2, -2, 0, 1, 8, -8, 0, 0, 1, 22, -6, -32, 16, 0, 1, 52, 84, -272, 136, 0, 0, 1, 114, 606, -1168, -96, 816, -272, 0, 1, 240, 2832, -2176, -8832, 11904, -3968, 0, 0, 1, 494, 11122, 11072, -83360, 71168, 13312, -31744, 7936, 0, 1, 1004
Offset: 0
[0] 1
[1] 0, 1
[2] 0, 1, 0
[3] 0, 1, 2, -2
[4] 0, 1, 8, -8, 0
[5] 0, 1, 22, -6, -32, 16
[6] 0, 1, 52, 84, -272, 136, 0
-
with(combinat): A225678 := (n, k) -> add((-1)^(n+k+j)*eulerian1(n,j) *binomial(j,n-k), j=0..n); seq(print(seq(A225678(n,k),k=0..n)),n=0..8);
Showing 1-6 of 6 results.
Comments