A143506 Irregular triangle read by rows: first row is 1, and n-th row gives the coefficients of x^(n - 1)*R(n,x + 1/x)/(x + 1/x), where R(n,x) is the n-th row polynomial for A060187.
1, 1, 1, 1, 1, 6, 3, 6, 1, 1, 23, 26, 47, 26, 23, 1, 1, 76, 234, 304, 467, 304, 234, 76, 1, 1, 237, 1687, 2630, 5293, 4787, 5293, 2630, 1687, 237, 1, 1, 722, 10549, 27158, 52730, 78586, 84365, 78586, 52730, 27158, 10549, 722, 1, 1, 2179, 60664, 272797, 563029, 1132234
Offset: 0
Examples
Triangle begins: 1; 1, 1, 1; 1, 6, 3, 6, 1; 1, 23, 26, 47, 26, 23, 1; 1, 76, 234, 304, 467, 304, 234, 76, 1; 1, 237, 1687, 2630, 5293, 4787, 5293, 2630, 1687, 237, 1; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
Links
- Wikipedia, Lerch zeta function
Programs
-
Mathematica
Table[CoefficientList[FullSimplify[ExpandAll[2^n*(1 - x - 1/x)^(1 + n)*x^n*LerchPhi[x + 1/x, -n, 1/2]]], x], {n, 0, 10}]//Flatten
Formula
Row n is generated by the polynomial 2^n*(1 - x - 1/x)^(1 + n)*x^n*Phi(x + 1/x, -n, 1/2), where Phi is the Lerch transcendant.
E.g.f.: (1 - x + x^2)*exp((1 + x + x^2)*t)/((1 + x^2)*exp(2*t*x) - x*exp(2*(1 + x^2)*t)). - Franck Maminirina Ramaharo, Oct 25 2018
Extensions
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 25 2018
Comments