A075860 a(n) is the fixed point reached when the map x -> A008472(x) is iterated, starting from x = n, with the convention a(1)=0.
0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 3, 2, 2, 17, 5, 19, 7, 7, 13, 23, 5, 5, 2, 3, 3, 29, 7, 31, 2, 3, 19, 5, 5, 37, 7, 2, 7, 41, 5, 43, 13, 2, 5, 47, 5, 7, 7, 7, 2, 53, 5, 2, 3, 13, 31, 59, 7, 61, 3, 7, 2, 5, 2, 67, 19, 2, 3, 71, 5, 73, 2, 2, 7, 5, 5, 79, 7, 3, 43, 83, 5, 13, 2, 2, 13, 89
Offset: 1
Examples
Starting with 60 = 2^2 * 3 * 5 as the first term, add the prime factors of 60 to get the second term = 2 + 3 + 5 = 10. Then add the prime factors of 10 = 2 * 5 to get the third term = 2 + 5 = 7, which is prime. (Successive terms of the sequence will be equal to 7.) Hence a(60) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) option remember; if isprime(n) then n else procname(convert(numtheory:-factorset(n), `+`)) fi end proc: f(1):= 0: map(f, [$1..100]); # Robert Israel, Mar 31 2020
-
Mathematica
f[n_] := Module[{a}, a = n; While[ !PrimeQ[a], a = Apply[Plus, Transpose[FactorInteger[a]][[1]]]]; a]; Table[f[i], {i, 2, 100}] (* Second program: *) a[n_] := If[n == 1, 0, FixedPoint[Total[FactorInteger[#][[All, 1]]]&, n]]; Array[a, 100] (* Jean-François Alcover, Apr 01 2020 *)
-
PARI
fp(n, pn) = if (n == pn, n, fp(vecsum(factor(n)[, 1]), n)); a(n) = if (n==1, 0, fp(n, 0)); \\ Michel Marcus, Sep 02 2023
-
Python
from sympy import primefactors def a(n, pn): if n == pn: return n else: return a(sum(primefactors(n)), n) print([a(i, None) for i in range(1, 100)]) # Gleb Ivanov, Nov 05 2021
Extensions
Better description from Labos Elemer, Apr 09 2003
Name clarified by Michel Marcus, Sep 02 2023
Comments