A326847 Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 13: {6} 16: {1,1,1,1} 17: {7} 19: {8} 23: {9} 25: {3,3} 27: {2,2,2} 29: {10} 30: {1,2,3} 31: {11} 32: {1,1,1,1,1} 37: {12}
Links
- R. J. Mathar, Table of n, a(n) for n = 1..489
Crossrefs
Programs
-
Maple
isA326847 := proc(n) psigsu := A056239(n) ; for ifs in ifactors(n)[2] do p := op(1,ifs) ; psig := numtheory[pi](p) ; if modp(psigsu,psig) <> 0 then return false; end if; end do: psigle := numtheory[bigomega](n) ; if modp(psigsu,psigle) = 0 then true; else false; end if; end proc: n := 1: for i from 2 to 3000 do if isA326847(i) then printf("%d %d\n",n,i); n := n+1 ; end if; end do: # R. J. Mathar, Aug 09 2019
-
Mathematica
Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Length[y]]&&And@@IntegerQ/@(Total[y]/y)]&]
Comments