cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063908 Numbers k such that k and 2*k-3 are primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 53, 67, 71, 83, 97, 101, 107, 113, 127, 137, 157, 167, 181, 191, 193, 211, 223, 233, 241, 251, 263, 283, 311, 317, 331, 347, 373, 421, 431, 433, 443, 457, 461, 487, 521, 547, 563, 577, 587, 613, 617, 631, 641, 643, 647
Offset: 1

Views

Author

N. J. A. Sloane, Aug 31 2001

Keywords

Comments

If p is in this sequence then the products of positive powers of 3, p and 2p-3 are entries in A086486. - Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 23 2003
Median prime of AP3's starting at 3, i.e., triples of primes (3,p,q) in arithmetic progression. - M. F. Hasler, Sep 24 2009
a(n) = sum of the coprimes(p) mod (p+1). - J. M. Bergot, Nov 13 2014
A010051(2*a(n)-3) = 1. - Reinhard Zumkeller, Jul 02 2015
A098090 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

Examples

			From _K. D. Bajpai_, Nov 29 2019: (Start)
a(5) = 13 is prime and 2*13 - 3 = 23 is also prime.
a(6) = 17 is prime and 2*17 - 3 = 31 is also prime.
(End)
		

Crossrefs

Programs

  • Haskell
    a063908 n = a063908_list !! (n-1)
    a063908_list = filter
       ((== 1) . a010051' . (subtract 3) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [n : n in [0..700] | IsPrime(n) and IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 14 2014
    
  • Maple
    select(k -> andmap(isprime, [k, 2*k-3]), [seq(k, k=1.. 10^4)]); # K. D. Bajpai, Nov 29 2019
  • Mathematica
    Select[Prime[Range[6! ]],PrimeQ[2*#-3]&] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
  • PARI
    { n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 3), write("b063908.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    forprime( p=1,default(primelimit), isprime(2*p-3) && print1(p",")) \\ M. F. Hasler, Sep 24 2009
    

Formula

a(n) = A241817(n)/2. - Wesley Ivan Hurt, Apr 08 2018

A326847 Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

First differs from A071139, A089352 and A086486 in lacking 60. First differs from A326837 in lacking 268.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326842.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
		

Crossrefs

Programs

  • Maple
    isA326847 := proc(n)
        psigsu := A056239(n) ;
        for ifs in ifactors(n)[2] do
            p := op(1,ifs) ;
            psig := numtheory[pi](p) ;
            if modp(psigsu,psig) <> 0 then
                return false;
            end if;
        end do:
        psigle := numtheory[bigomega](n) ;
        if modp(psigsu,psigle) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    n := 1:
    for i from 2 to 3000 do
        if isA326847(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
  • Mathematica
    Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Length[y]]&&And@@IntegerQ/@(Total[y]/y)]&]

Formula

Intersection of A326841 and A316413.

A144100 Numbers k such that k is strictly greater than f(k), where f(k) = 1 if k is prime, 2 * rad(k) if 4 divides k and rad(k) otherwise.

Original entry on oeis.org

2, 3, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 24, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 59, 61, 63, 64, 67, 71, 72, 73, 75, 79, 80, 81, 83, 88, 89, 90, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109, 112, 113, 117, 120, 121, 125, 126
Offset: 1

Views

Author

Reikku Kulon, Sep 10 2008

Keywords

Comments

This is the set of all integers k such that there exists a full period linear congruential pseudorandom number generator x -> bx + c (mod k), where b is not a multiple of k, b - 1 is a multiple of f(k) and c is a positive integer relatively prime to k.
4 is the only prime power not a member of the set: f(4) = 2 * rad(4) = 4.
This sequence consists of the primes and 2*A013929. - Charlie Neder, Jan 28 2019

Examples

			2 is a member: f(2) = 1 and the sequence (0, 1, 0, ...) given by x -> x + 1 (mod 2) has period 2.
8 is a member: f(8) = 4 and the sequence (0, 1, 6, 7, 4, 5, 2, 3, 0, ...) given by x -> 5x + 1 (mod 8) has period 8.
18 is a member: f(18) = 6 and the sequence (0, 1, 14, 3, 4, 17, 6, 7, 2, 9, 10, 5, 12, 13, 8, 15, 16, 11, 0, ...) given by x -> 13x + 1 (mod 18) has period 18.
		

Crossrefs

Programs

  • Haskell
    a144100 n = a144100_list !! (n-1)
    a144100_list = filter (\x -> a144907 x < x) [1..]
    -- Reinhard Zumkeller, Mar 12 2014
  • PARI
    rad(n) = local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]) ;
    f(n) = if (isprime(n), 1, if ((n % 4)==0 , 2*rad(n), rad(n))); isok(n) = n > f(n); \\ Michel Marcus, Aug 09 2013
    

Formula

A144907(a(n)) < a(n). - Reinhard Zumkeller, Mar 12 2014

A086487 Smallest number with n prime divisors such that the sum of the prime divisors is also a divisor, or 0 if no such number exists.

Original entry on oeis.org

2, 0, 30, 1122, 2730, 72930, 870870, 9699690, 340510170, 9592993410, 265257422430, 8624101075590, 304250263527210, 14299762385778870, 1164365758518632670, 43657174563782890110, 1987938667108592728530
Offset: 1

Views

Author

Amarnath Murthy, Jul 28 2003

Keywords

Comments

First member of A086486 with n distinct prime factors. A001221(a(n)) = n; A008472(a(n)) divides a(n). - David Wasserman, Mar 09 2005

Examples

			a(3) = 30. The prime divisors of 30 are 2,3 and 5 and 2+3+5 = 10, divides 30.
		

Crossrefs

Extensions

More terms from David Wasserman, Mar 09 2005

A131647 Composite numbers that are products of distinct primes and divisible by the sum of those primes.

Original entry on oeis.org

30, 70, 105, 231, 286, 627, 646, 805, 897, 1122, 1581, 1798, 2730, 2958, 2967, 3055, 3526, 3570, 4070, 4543, 5487, 5658, 6461, 6745, 7198, 7881, 8778, 8970, 9222, 9282, 9717, 10366, 10370, 10626, 10707, 11130, 14231, 15015, 16377, 16530, 19866
Offset: 1

Views

Author

Tanya Khovanova, Sep 08 2007

Keywords

Examples

			1122 = 2*3*11*17 and 1122 is divisible by 2+3+11+17 = 33.
		

Crossrefs

Sequence union A000040 = A005117 intersect A086486. - Ray Chandler, Nov 29 2011

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do
    if issqrfree(n) and not isprime(n) then a:=ifactors(n)[2];
    if type(n/add(a[k][1],k=1..nops(a)),integer) then print(n); fi;
    fi; od; end: P(10^9); # Paolo P. Lava, Sep 19 2014
  • Mathematica
    Select[Range[2, 20000], PrimeQ[ # ] == False && Union[Transpose[FactorInteger[ # ]][[2]]] == {1} && Mod[ #, Plus @@ Transpose[FactorInteger[ # ]][[1]]] == 0 &]
    pdpQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},!PrimeQ[n]&&Max[fi[[2]]] == 1&&Divisible[n,Total[fi[[1]]]]]; Select[Range[2,50000],pdpQ] (* Harvey P. Dale, Oct 16 2013 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, f = factor(n); nbp = #f~; if ((vecmax(f[,2]) == 1) && !(n % sum(i=1, nbp, f[i, 1])), print1(n, ", ")););} \\ Michel Marcus, Sep 19 2014

A380487 Numbers such that the sum of prime factors without repetition divides the product of prime factors without repetition and each division yields a greater quotient.

Original entry on oeis.org

2, 30, 70, 105, 231, 627, 805, 1122, 2730, 3570, 8778, 9282, 10626, 15015, 24738, 24882, 31746, 33495, 33915, 44330, 45885, 49335, 51051, 62985, 72930, 95095, 106590, 132990, 145145, 156009, 170170, 222870, 230945, 274505, 290598, 329406, 335478, 418285, 449995
Offset: 1

Views

Author

Torlach Rush, Jan 24 2025

Keywords

Comments

Conjecture: There exists m, the smallest positive integer such that a(k)|a(k+m), for all k.

Examples

			2 is a term because sopf(2)|rad(2) = 2|2.
30 is a term because sopf(30)|rad(30) = 10|30.
70 is a term because sopf(70)|rad(70) = 14|70.
		

Crossrefs

Subsequence of A086486.

Programs

  • Maple
    f:= proc(n,m) local q,S;
       S:= numtheory:-factorset(n);
       q:= convert(S,`*`)/convert(S,`+`);
       if q::integer and q > m  then q else 0 fi;
    end proc:
    m:= 0: R:= NULL: count:= 0:
    for n from 2 while count < 50 do
      v:= f(n,m);
      if v > 0 then
        m:= v;  R:= R, n; count:= count+1;
      fi;
    od:
    R; # Robert Israel, Apr 30 2025
  • Mathematica
    s={};q=0;Do[pf=Times@@First/@FactorInteger[n];sf=Total[First/@FactorInteger[n]];If[Divisible[pf,sf]&&pf/sf>q,AppendTo[s,n];q=pf/sf],{n,2,449995}];s (* James C. McMahon, Apr 03 2025 *)
  • PARI
    lista(nn) = my(m=0, list=List()); for (n=2, nn, my(f=factor(n)[,1], q=factorback(f)/vecsum(f)); if ((denominator(q) == 1) && (q>m), listput(list, n); m=q);); Vec(list); \\ Michel Marcus, Mar 29 2025
  • Sage
    def sopf(n): return sum(set(prime_factors(n)))
    def rad(n):
        rad = 1
        for p in set(prime_factors(n)): rad *= p
        return rad
    def output(limit=39):
        results = []
        n = 2
        result = 0
        while len(results) < limit:
            sopf_n = sopf(n)
            rad_n = rad(n)
            if rad_n % sopf_n == 0 and result < rad_n / sopf_n:
                results.append(n)
                result = rad_n / sopf_n
                print(n, end=', ')
            n += 1
        return results
    output()
    

A086488 A086487(n)/S where S is the sum of the prime divisors.

Original entry on oeis.org

1, 0, 3, 34, 91, 1430, 12441, 125970, 3095547, 67083870, 1560337779, 42483256530, 1278362451795, 50174604862382, 3146934482482791, 109416477603465890, 4497598794363331965, 327313882010942897070, 14916466618879283766165
Offset: 1

Views

Author

Amarnath Murthy, Jul 28 2003

Keywords

Examples

			a(3) = 3. A086487(3) = 30 /(2+3+5) = 3.
		

Crossrefs

Formula

a(n) = A086487(n)/A008472(A086487(n)). - David Wasserman, Mar 09 2005

Extensions

More terms from David Wasserman, Mar 09 2005
Showing 1-7 of 7 results.