cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A134383 Values of d(n) associated with A134382.

Original entry on oeis.org

6, 12, 10, 24, 12, 16, 12, 24, 16, 12, 16, 16, 24, 32, 16, 32, 8, 12, 8, 32, 48, 8, 4, 24, 12, 36, 16, 8, 8, 4, 24, 24
Offset: 1

Views

Author

Enoch Haga, Oct 23 2007

Keywords

Crossrefs

Formula

a(n) = A000005(A134382(n)). - Omar E. Pol, Mar 27 2008

Extensions

Corrected by Omar E. Pol, Mar 27 2008
New values verified by N. J. A. Sloane, May 28 2008
a(32) from Michel Marcus, Sep 08 2019
Keywords fini and full added by Amiram Eldar, Feb 01 2025

A134384 Values of sopf(n) associated with A134382.

Original entry on oeis.org

7, 14, 31, 21, 42, 28, 50, 35, 36, 39, 63, 57, 45, 36, 54, 45, 135, 126, 156, 81, 64, 185, 380, 133, 210, 105, 171, 231, 567, 966, 756, 1495
Offset: 1

Views

Author

Enoch Haga, Oct 23 2007

Keywords

Crossrefs

Formula

a(n) = A008472(A134382(n)). - Omar E. Pol, Mar 27 2008

Extensions

Corrected by Omar E. Pol, Mar 27 2008
New values verified by N. J. A. Sloane, May 28 2008
a(31)-a(32) calculated from the data at A134382 by Amiram Eldar, Feb 16 2020
Keywords fini,full added by Max Alekseyev, Sep 18 2024

A134385 Values of product d(n)*sopf(n) associated with A134382.

Original entry on oeis.org

42, 168, 310, 504, 504, 448, 600, 840, 576, 468, 1008, 912, 1080, 1152, 864, 1440, 1080, 1512, 1248, 2592, 3072, 1480, 1520, 3192, 2520, 3780, 2736, 1848, 4536, 3864, 18144, 35880
Offset: 1

Views

Author

Enoch Haga, Oct 23 2007

Keywords

Crossrefs

Formula

a(n) = A134383(n)*A134384(n) = A000005(A134382(n))*A008472(A134382(n)). - Omar E. Pol, Mar 27 2008

Extensions

Corrected by Omar E. Pol, Mar 27 2008
New values verified by N. J. A. Sloane, May 28 2008
a(31)-a(32) calculated from the data at A134382 by Amiram Eldar, Feb 16 2020
Keywords fini,full added by Max Alekseyev, Sep 18 2024

A134386 Values of n*d(k)*sopf(k) associated with A134382.

Original entry on oeis.org

42, 336, 930, 2016, 2520, 2688, 4200, 6720, 5184, 4680, 11088, 10944, 14040, 16128, 12960, 23040, 18360, 27216, 23712, 51840, 64512, 32560, 34960, 76608, 63000, 98280, 73872, 51744, 131544, 115920, 562464, 1148160
Offset: 1

Views

Author

Enoch Haga, Oct 23 2007

Keywords

Crossrefs

Programs

Formula

a(n) = sigma(A134382(n)) = A000203(A134382(n)). - Jens Kruse Andersen, May 03 2008

Extensions

Corrected by Omar E. Pol, Mar 27 2008
Edited and values confirmed by N. J. A. Sloane, May 28 2008
a(31)-a(32) calculated from the data at A134382 by Amiram Eldar, Feb 16 2020
Keywords fini,full added by Max Alekseyev, Sep 18 2024

A328051 Numbers m such that sigma(m)/(d(m)*sopf(m)) is an integer, where d is the number of divisors (A000005) and sopf the sum of prime factors without repetition (A008472).

Original entry on oeis.org

20, 35, 42, 54, 140, 189, 195, 207, 209, 276, 378, 464, 470, 500, 506, 510, 527, 540, 608, 660, 672, 741, 846, 864, 875, 899, 923, 945, 989, 1029, 1120, 1276, 1316, 1323, 1334, 1349, 1365, 1519, 1539, 1564, 1595, 1715, 1725, 1736, 1755, 1815, 1880, 1887, 1914, 2058
Offset: 1

Views

Author

Michel Marcus, Oct 03 2019

Keywords

Comments

This sequence is motivated by the short fate of A134382.

Examples

			For n=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, an integer, so 20 is a term.
		

Crossrefs

Programs

  • Magma
    [k: k in [2..2100]|IsIntegral(DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k))))]; // Marius A. Burtea, Oct 03 2019
  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((e + 1)*(p - 1)); Select[Range[2, 2100], IntegerQ[ Times @@ (f @@@ (fct = FactorInteger[#])) / Plus @@ (fct[[;; , 1]])] &] (* Amiram Eldar, Oct 03 2019 *)
  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(m) = if (m>1, my(f=factor(m)); (sigma(f) % (numdiv(f)*sopf(f))) == 0);
    

A328052 Value of sigma(m)/(d(m)*sopf(m)) for the integers m that make this expression an integer.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 2, 2, 2, 2, 5, 3, 2, 13, 3, 3, 3, 7, 5, 4, 7, 4, 3, 21, 13, 4, 3, 8, 4, 20, 9, 5, 4, 19, 5, 4, 6, 8, 11, 6, 6, 25, 8, 6, 10, 14, 5, 6, 6, 25, 4, 4, 6, 7, 9, 10, 5, 8, 26, 6, 9, 8, 10, 6, 6, 6, 7, 12, 6, 9, 26, 19, 6, 7, 10, 13, 9, 9, 15, 9, 7, 123
Offset: 1

Views

Author

Michel Marcus, Oct 03 2019

Keywords

Examples

			For A328052(1)=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, so a(1) = 1.
		

Crossrefs

Programs

  • Magma
    [a: k in [2..5000]|IsIntegral(a) where a is DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k)))]; // Marius A. Burtea, Oct 03 2019
  • Mathematica
    f[p_, e_]  := (p^(e + 1) - 1)/((e + 1)*(p - 1)); r[n_] := Times @@ (f @@@ (fct = FactorInteger[n])) / Plus @@ (fct[[;; , 1]]); Select[r /@ Range[2, 4500], IntegerQ] (* Amiram Eldar, Oct 03 2019 *)
  • PARI
    lista(nn) = {for (n=2, nn, my(f=factor(n)); if (denominator(q = sigma(f)/(numdiv(f)*sopf(f))) == 1, print1(q, ", ")););}
    

Formula

a(n) = A000203(A328051(n))/(A000005(A328051(n))*A008472(A328051(n))). - Felix Fröhlich, Oct 03 2019

A328174 a(n) is the least integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

20, 140, 54, 189, 378, 1365, 540, 945, 1120, 1755, 1539, 3465, 500, 1815, 4256, 6384, 14645, 5280, 1323, 1029, 864, 23871, 34579, 12903, 1715, 2673, 11934, 5589, 106805, 12285, 5600, 11625, 21070, 41915, 4459, 16905, 61320, 6615, 11178, 5145, 110839, 19656, 109225
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(k, n) = my(fk=factor(k)); n*numdiv(fk)*sopf(fk) == sigma(fk);
    a(n) = {my(k=1); while (!isok(k, n), k++); k;}

A328175 a(n) is the largest integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

42, 470, 923, 2159, 12924, 3735, 4316, 8786, 23939, 24412, 76502, 26768, 28612, 47849, 145620, 36002, 118204, 189143, 116999, 105657, 109559, 252474, 142687, 236860, 504899, 265682, 388798, 1558808, 154559, 345687, 709564, 544829, 383086, 652049, 361905, 1193075
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    lista(nn) = {/* nn should be > 10^7 */ my(nmax = 43, v = vector(nmax, k, List())); for (n=2, nn, my(f=factor(n), q); if (denominator(q=sigma(f)/(numdiv(f)*sopf(f))) == 1, if (q <= nmax, listput(v[q], n)););); for (i=1, nmax, if (#v[i] == 0, break); print1(vecmax(Vec(v[i])), ", "););}
Showing 1-8 of 8 results.