cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328051 Numbers m such that sigma(m)/(d(m)*sopf(m)) is an integer, where d is the number of divisors (A000005) and sopf the sum of prime factors without repetition (A008472).

Original entry on oeis.org

20, 35, 42, 54, 140, 189, 195, 207, 209, 276, 378, 464, 470, 500, 506, 510, 527, 540, 608, 660, 672, 741, 846, 864, 875, 899, 923, 945, 989, 1029, 1120, 1276, 1316, 1323, 1334, 1349, 1365, 1519, 1539, 1564, 1595, 1715, 1725, 1736, 1755, 1815, 1880, 1887, 1914, 2058
Offset: 1

Views

Author

Michel Marcus, Oct 03 2019

Keywords

Comments

This sequence is motivated by the short fate of A134382.

Examples

			For n=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, an integer, so 20 is a term.
		

Crossrefs

Programs

  • Magma
    [k: k in [2..2100]|IsIntegral(DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k))))]; // Marius A. Burtea, Oct 03 2019
  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((e + 1)*(p - 1)); Select[Range[2, 2100], IntegerQ[ Times @@ (f @@@ (fct = FactorInteger[#])) / Plus @@ (fct[[;; , 1]])] &] (* Amiram Eldar, Oct 03 2019 *)
  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(m) = if (m>1, my(f=factor(m)); (sigma(f) % (numdiv(f)*sopf(f))) == 0);
    

A328174 a(n) is the least integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

20, 140, 54, 189, 378, 1365, 540, 945, 1120, 1755, 1539, 3465, 500, 1815, 4256, 6384, 14645, 5280, 1323, 1029, 864, 23871, 34579, 12903, 1715, 2673, 11934, 5589, 106805, 12285, 5600, 11625, 21070, 41915, 4459, 16905, 61320, 6615, 11178, 5145, 110839, 19656, 109225
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(k, n) = my(fk=factor(k)); n*numdiv(fk)*sopf(fk) == sigma(fk);
    a(n) = {my(k=1); while (!isok(k, n), k++); k;}

A328175 a(n) is the largest integer k such that sigma(k)/(d(k)*sopf(k)) = n where d=A000005, sigma=A000203 and sopf=A008472.

Original entry on oeis.org

42, 470, 923, 2159, 12924, 3735, 4316, 8786, 23939, 24412, 76502, 26768, 28612, 47849, 145620, 36002, 118204, 189143, 116999, 105657, 109559, 252474, 142687, 236860, 504899, 265682, 388798, 1558808, 154559, 345687, 709564, 544829, 383086, 652049, 361905, 1193075
Offset: 1

Views

Author

Michel Marcus, Oct 06 2019

Keywords

Crossrefs

Programs

  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    lista(nn) = {/* nn should be > 10^7 */ my(nmax = 43, v = vector(nmax, k, List())); for (n=2, nn, my(f=factor(n), q); if (denominator(q=sigma(f)/(numdiv(f)*sopf(f))) == 1, if (q <= nmax, listput(v[q], n)););); for (i=1, nmax, if (#v[i] == 0, break); print1(vecmax(Vec(v[i])), ", "););}
Showing 1-3 of 3 results.