A328051 Numbers m such that sigma(m)/(d(m)*sopf(m)) is an integer, where d is the number of divisors (A000005) and sopf the sum of prime factors without repetition (A008472).
20, 35, 42, 54, 140, 189, 195, 207, 209, 276, 378, 464, 470, 500, 506, 510, 527, 540, 608, 660, 672, 741, 846, 864, 875, 899, 923, 945, 989, 1029, 1120, 1276, 1316, 1323, 1334, 1349, 1365, 1519, 1539, 1564, 1595, 1715, 1725, 1736, 1755, 1815, 1880, 1887, 1914, 2058
Offset: 1
Keywords
Examples
For n=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, an integer, so 20 is a term.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k: k in [2..2100]|IsIntegral(DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k))))]; // Marius A. Burtea, Oct 03 2019
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/((e + 1)*(p - 1)); Select[Range[2, 2100], IntegerQ[ Times @@ (f @@@ (fct = FactorInteger[#])) / Plus @@ (fct[[;; , 1]])] &] (* Amiram Eldar, Oct 03 2019 *)
-
PARI
sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472 isok(m) = if (m>1, my(f=factor(m)); (sigma(f) % (numdiv(f)*sopf(f))) == 0);
Comments