cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A054411 Numbers k such that Sum_{j} p_j = Sum_{j} e_j where Product_{j} p_j^(e_j) is the prime factorization of k.

Original entry on oeis.org

1, 4, 27, 48, 72, 108, 162, 320, 800, 1792, 2000, 3125, 3840, 5000, 5760, 6272, 8640, 9600, 10935, 12500, 12960, 14400, 18225, 19440, 21504, 21600, 21952, 24000, 29160, 30375, 31250, 32256, 32400, 36000, 43740, 45056, 48384, 48600, 50625, 54000, 60000, 65610
Offset: 1

Views

Author

Leroy Quet, May 09 2000

Keywords

Comments

Numbers for which the sum of distinct prime factors equals the sum of exponents in the prime factorization, A008472(n)=A001222(n). - Reinhard Zumkeller, Mar 08 2002

Examples

			320 is included because 320 = 2^6 * 5^1 and 2+5 = 6+1.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Plus@@First/@FactorInteger[n]==Plus@@Last/@FactorInteger[n]; lst={};Do[If[f[n],AppendTo[lst,n]],{n,0,3*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
    max = 10^12; Sort@Reap[Sow@1; Do[p = Select[IntegerPartitions[se, All, Prime@ Range@ PrimePi@ se], Sort[#] == Union[#] &]; Do[ np = Length[f]; va = IntegerPartitions[se, {np}, Range[se]]; Do[pe = Permutations[v]; Do[z = Times @@ (f^e); If[z <= max, Sow@z], {e, pe}], {v, va}], {f, p}], {se, 2, Log2[max]}]][[2, 1]] (* Giovanni Resta, May 07 2016 *)
  • PARI
    for(n=1,10^6,if(bigomega(n)==sumdiv(n,d,isprime(d)*d),print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)); sum(i=1,#f~, f[i,1]-f[i,2])==0 \\ Charles R Greathouse IV, Sep 08 2016
    
  • Sage
    def d(n):
        v=factor(n)[:]; L=len(v); s0=sum(v[j][0] for j in range(L)); s1=sum(v[j][1] for j in range(L))
        return s0-s1
    [k for k in (1..100000) if d(k)==0] # Giuseppe Coppoletta, May 07 2016

A068938 Numbers having the sum of distinct prime factors greater than the sum of exponents in prime factorization, A008472(n)>A001222(n).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Examples

			12 is included because 12 = 2^2 * 3^1 and 2+3 > 2+1.
		

Crossrefs

Programs

  • Mathematica
    sdfQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},Total[fi[[1]]] > Total[ fi[[2]]]]; Select[Range[80],sdfQ] (* Harvey P. Dale, Jul 23 2013 *)

Extensions

More terms from David Wasserman, Jun 17 2002

A068935 Numbers having the sum of distinct prime factors less than the sum of exponents in prime factorization, A008472(n) < A001222(n).

Original entry on oeis.org

8, 16, 32, 64, 81, 96, 128, 144, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1944, 2048, 2187, 2304, 2560, 2592, 2916, 3072, 3200, 3456, 3584, 3888, 4000, 4096, 4374, 4608
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Examples

			144 is included because 144 = 2^4 * 3^2 and 2+3 < 4+2.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{tfi=Transpose[FactorInteger[n]]},Total[First[tfi]]Harvey P. Dale, Jan 17 2011 *)
  • PARI
    isok(n) = vecsum(factor(n)[,1]) < bigomega(n); \\ Michel Marcus, Apr 25 2016

Extensions

More terms from Michel Marcus, Apr 25 2016

A068937 Numbers having the sum of distinct prime factors not less than the sum of exponents in prime factorization, A008472(n)>=A001222(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[76], Plus @@ (f = FactorInteger[#])[[;;,1]] >= Plus @@ f[[;;,2]] &] (* Amiram Eldar, Nov 14 2019 *)

Extensions

More terms from David Wasserman, Jun 17 2002

A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.

Original entry on oeis.org

1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1

Views

Author

Labos Elemer, Nov 21 2003

Keywords

Comments

What is the asymptotic growth of this sequence?
Answer: a(n) ~ k*n, where k = 1/A175475. That is, about 4.8% of numbers are in this sequence. - Charles R Greathouse IV, Jul 14 2014

Examples

			378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
		

Crossrefs

Programs

  • Maple
    filter:= n ->
    evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n):
    select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}]
    Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *)
    Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
    
  • Python
    from sympy import primefactors
    def ok(n):
        if n==1 or max(primefactors(n))**3<=n: return True
        else: return False
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017

Formula

Solutions to A006530(n) <= n^(1/3).

A113645 Numbers k such that sum of exponents in prime factorization of k (i.e., A001222(k)) is >= each prime divisor of k.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 80, 81, 96, 108, 120, 128, 144, 160, 162, 180, 192, 200, 216, 240, 243, 256, 270, 288, 300, 320, 324, 360, 384, 400, 405, 432, 448, 450, 480, 486, 500, 512, 540, 576, 600, 640, 648, 672, 675, 720, 729, 750, 768
Offset: 1

Views

Author

Leroy Quet, Jan 15 2006

Keywords

Examples

			12 = 2^2 *3^1. Since the sum of the prime factorization exponents, 2+1 = 3, is >= the largest prime dividing 12, which is 3, then 12 is included in the sequence.
		

Crossrefs

A proper subset of A068936.

Programs

  • Mathematica
    fQ[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f >= Max[First /@ f]]; Select[ Range[2, 800], fQ@ # &] (* Robert G. Wilson v, Jan 16 2006 *)
    qu[n_]:=n>1&&Block[{f=Transpose@FactorInteger@n, s}, s=Plus@@f[[2]];s>=Max@f[[1]]]; L ={};Do[If[qu[n], Print[n];AppendTo[L, n]], {n, 1000}];L (* Giovanni Resta, Jan 16 2006 *)
  • PARI
    isok(m) = {my(f=factor(m)); #select(x->(x>bigomega(f)), f[,1]~) == 0;} \\ Michel Marcus, Sep 17 2020

Formula

A number k is included if A006530(k) <= A001222(k).

Extensions

More terms from Robert G. Wilson v and Giovanni Resta, Jan 16 2006

A356433 Numbers k such that, in the prime factorization of k, the least common multiple of the exponents equals the least common multiple of the prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 576, 800, 1458, 1728, 2916, 3125, 5120, 5832, 6272, 12500, 21600, 25600, 30375, 36000, 46656, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 388800, 395136, 583200, 600000, 653184, 691200, 750141, 802816, 823543, 857304, 979776
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 07 2022

Keywords

Comments

Numbers k such that A072411(k) = A007947(k). - Michel Marcus, Aug 29 2022
Terms p^p, p prime, form the subsequence A051674. - Bernard Schott, Sep 21 2022
Terms p^q * q^p with distinct primes p and q form the subsequence A082949. - Bernard Schott, Feb 01 2023

Examples

			576 = 2^6 * 3^2, lcm(2,3) = 6 = lcm(6,2), hence 576 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal @@ LCM @@ FactorInteger[#] &] (* Amiram Eldar, Aug 07 2022 *)
  • PARI
    isok(k) = my(f=factor(k)); lcm(f[,1]) == lcm(f[,2]); \\ Michel Marcus, Aug 07 2022
    
  • Python
    from math import lcm
    from sympy import factorint
    def ok(n): f = factorint(n); return lcm(*f.keys()) == lcm(*f.values())
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 07 2022
Showing 1-7 of 7 results.