cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A054412 Numbers k such that, in the prime factorization of k, the product of exponents equals the product of prime factors.

Original entry on oeis.org

1, 4, 27, 72, 108, 192, 800, 1458, 3125, 5120, 6272, 12500, 21600, 30375, 36000, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 395136, 600000, 653184, 750141, 823543, 857304, 979776, 1384448, 1474560, 1500000
Offset: 1

Views

Author

Leroy Quet, May 09 2000

Keywords

Comments

For p prime, numbers of the form p^p satisfy the condition, hence A051674 is a subsequence. - Michel Marcus, May 19 2014
Also, numbers of the form p^q * q^p, with distinct primes p and q, satisfy the condition, hence A082949 is a subsequence. - Bernard Schott, Apr 11 2020

Examples

			192 is included because 192 =2^6 *3^1 and 2*3 = 6*1.
		

Crossrefs

Programs

  • Mathematica
    peppfQ[n_]:=Module[{f=Transpose[FactorInteger[n]]},Times@@First[f] == Times@@Last[f]]; Select[Range[1.5*10^6],peppfQ] (* Harvey P. Dale, Oct 14 2015 *)
  • PARI
    isok(n) = my(f = factor(n)); prod(i=1, #f~, f[i,2]) == prod(i=1, #f~, f[i,1]); \\ Michel Marcus, May 19 2014
    
  • PARI
    \\ See Links section.

Extensions

More terms from James Sellers, May 23 2000
New name and three more terms from Michel Marcus, May 19 2014

A122406 Numbers of the form Product_i p_i^e_i, where the p_i are distinct primes and the e_i are a permutation of the p_i.

Original entry on oeis.org

1, 4, 27, 72, 108, 800, 3125, 6272, 12500, 21600, 30375, 36000, 48600, 84375, 121500, 169344, 225000, 247808, 337500, 395136, 750141, 823543, 857304, 1384448, 3000564, 3294172, 6690816, 19600000, 22235661, 24532992, 37380096, 37879808, 53782400, 59295096, 88942644
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that if m = Product_i [p_i^e_i] then m = Product_i [e_i * (p_i^(e_i - 1))]. Example: 21600 = 2^5 * 3^3 * 5^2 = 5*2^4 * 3*3^2 * 2*5^1. - Jaroslav Krizek, Jun 23 2011
From Rémy Sigrist, Oct 29 2017: (Start)
If gcd(a(i), a(j)) = 1, then a(i)*a(j) belongs to the sequence.
This sequence has similarities with A109297, where the prime exponents are a permutation of the prime indices. (End)

Examples

			2^5 * 3^3 * 5^2 = 21600, so 21600 is in the sequence. - corrected by _Jaroslav Krizek_, Jun 23 2011
		

Crossrefs

Subsequence of A054411, A054412, and A122405.
Cf. A109297.

Programs

  • Mathematica
    Clear[f, seq]; f[sub_] := f[sub] = (Times @@ (sub^#) & ) /@ Permutations[sub]; seq[0] = {1}; seq[k_] := seq[k] = Union[seq[k - 1], f /@ Subsets[Prime /@ Range[17], {k}] // Flatten // Union // Select[#, # <= 6836638277409177600000 &] &]; seq[k = 1]; While[nterms = Length[seq[k]]; nterms < 1000, k++; Print["nterms = ", nterms]]; seq[k] (* Jean-François Alcover, Dec 09 2013, using Alois P. Heinz's data *)
  • PARI
    is(n)=n=factor(n);vecsort(n[,1])==vecsort(n[,2]) \\ Charles R Greathouse IV, Jun 24 2011

A068936 Numbers having the sum of distinct prime factors not greater than the sum of exponents in prime factorization, A008472(k) <= A001222(k).

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 48, 64, 72, 81, 96, 108, 128, 144, 162, 192, 216, 243, 256, 288, 320, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 800, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1792, 1944, 2000, 2048, 2187, 2304, 2560, 2592, 2916
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Comments

The product of any two terms is also a term. - Amiram Eldar, May 14 2025

Examples

			a(5) = 27 = 3^3, 3 = 3.
a(10) = 81 = 3^4, 3 < 4.
a(100) = 16000 = 2^7 * 5^3,  2+5 < 7+3.
a(1000) = 10321920 = 2^15 * 3^2 * 5 * 7, 2+3+5+7 < 15+2+1+1.
		

Crossrefs

Programs

  • Haskell
    a068936 n = a068936_list !! (n-1)
    a068936_list = [x | x <- [1..], a008472 x <= a001222 x]
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    fQ[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f >= Plus @@ First /@ f]; Select[ Range@3000, fQ@ # &] (* Robert G. Wilson v, Jan 16 2006 *)
    Select[Range@ 3000, First@ Differences@ Map[Total, Transpose@ FactorInteger@ #] >= 0 &] (* Michael De Vlieger, Dec 08 2016 *)
  • PARI
    isok(k) = {my(f = factor(k)); vecsum(f[,1]) <= bigomega(f);} \\ Amiram Eldar, May 14 2025

Extensions

More terms from Robert G. Wilson v, Jan 16 2006

A071174 Numbers whose sum of exponents is equal to the product of prime factors.

Original entry on oeis.org

4, 27, 96, 144, 216, 324, 486, 2560, 3125, 6400, 16000, 40000, 57344, 100000, 200704, 250000, 625000, 702464, 823543, 1562500, 2458624, 3906250, 8605184, 23068672, 23914845, 30118144, 39858075, 66430125, 105413504, 110716875, 126877696, 184528125, 307546875, 368947264, 436207616
Offset: 1

Views

Author

Benoit Cloitre, Jun 10 2002

Keywords

Comments

Number k such that A001222(k) = A007947(k). - Amiram Eldar, Jun 24 2022

Examples

			57344 = 2^13 * 7^1 and 2*7 = 13+1 hence 57344 is in the sequence.
16000 = 2^7 * 5^3 and 2*5 = 7+3 hence 16000 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Times @@(f = FactorInteger[n])[[;; , 1]] == Total[f[[;; , 2]]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),1),i))==sum(i=1,o, component(component(factor(n),2),i)),print1(n,",")))
    
  • Python
    from math import prod
    from sympy import factorint
    def ok(n): f = factorint(n); return sum(f[p] for p in f)==prod(p for p in f)
    print(list(filter(ok, range(10**6)))) # Michael S. Branicky, Apr 27 2021

Extensions

More terms from Klaus Brockhaus, Jun 12 2002
More terms from Vladeta Jovovic, Jun 13 2002

A068938 Numbers having the sum of distinct prime factors greater than the sum of exponents in prime factorization, A008472(n)>A001222(n).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Examples

			12 is included because 12 = 2^2 * 3^1 and 2+3 > 2+1.
		

Crossrefs

Programs

  • Mathematica
    sdfQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},Total[fi[[1]]] > Total[ fi[[2]]]]; Select[Range[80],sdfQ] (* Harvey P. Dale, Jul 23 2013 *)

Extensions

More terms from David Wasserman, Jun 17 2002

A068935 Numbers having the sum of distinct prime factors less than the sum of exponents in prime factorization, A008472(n) < A001222(n).

Original entry on oeis.org

8, 16, 32, 64, 81, 96, 128, 144, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1944, 2048, 2187, 2304, 2560, 2592, 2916, 3072, 3200, 3456, 3584, 3888, 4000, 4096, 4374, 4608
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Examples

			144 is included because 144 = 2^4 * 3^2 and 2+3 < 4+2.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{tfi=Transpose[FactorInteger[n]]},Total[First[tfi]]Harvey P. Dale, Jan 17 2011 *)
  • PARI
    isok(n) = vecsum(factor(n)[,1]) < bigomega(n); \\ Michel Marcus, Apr 25 2016

Extensions

More terms from Michel Marcus, Apr 25 2016

A068937 Numbers having the sum of distinct prime factors not less than the sum of exponents in prime factorization, A008472(n)>=A001222(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[76], Plus @@ (f = FactorInteger[#])[[;;,1]] >= Plus @@ f[[;;,2]] &] (* Amiram Eldar, Nov 14 2019 *)

Extensions

More terms from David Wasserman, Jun 17 2002

A071175 Numbers whose product of exponents is equal to the sum of prime factors.

Original entry on oeis.org

4, 27, 96, 486, 640, 1440, 2025, 2400, 2744, 3024, 3125, 3528, 3584, 4032, 4536, 4860, 5292, 5625, 9408, 11907, 12150, 12348, 14256, 15360, 16464, 17424, 20412, 22400, 22464, 25344, 31360, 32805, 36504, 37500, 39204, 55566, 56250, 57624, 59904, 70304, 71442
Offset: 1

Views

Author

Benoit Cloitre, Jun 10 2002

Keywords

Comments

Number k such that A005361(k) = A008472(k). - Amiram Eldar, Jun 24 2022

Examples

			55566 = 2^1 * 3^4 * 7^3 and 1*4*3 = 2+3+7 hence 55566 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Total[(f = FactorInteger[n])[[;; , 1]]] == Times @@ f[[;; , 2]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    for(n=1,200000,o=omega(n); if(prod(i=1,o, component(component(factor(n),2),i))==sum(i=1,o, component(component(factor(n),1),i)),print1(n,",")))
    
  • Python
    from math import prod
    from sympy import factorint
    def ok(n): f = factorint(n); return prod(f[p] for p in f)==sum(p for p in f)
    print(list(filter(ok, range(10**5)))) # Michael S. Branicky, Apr 27 2021

A272818 Numbers such that (sum + product) of all their prime factors equals (sum + product) of all exponents in their prime factorization.

Original entry on oeis.org

1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 30375, 36000, 48600, 51840, 54675, 69120, 84375, 121500, 134456, 169344, 174960, 192000, 225000, 240000, 247808, 337500, 340736, 395136, 435456, 451584, 703125, 750141, 781250, 787320, 823543, 857304, 885735
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

For p prime, p^p satisfy the condition, hence A051674 (and also A048102) is a subsequence. Moreover, if p and q are primes and i and j are positive integers, if p^i * q^j verify the condition, then the same is true for p^j * q^i. So A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e. any permutation of its prime signature) gives also a term. In addition, any number having no more than two distinct prime factors (apart their multiplicity) is a term iff it belongs also to A272858.

Examples

			885735 = 3^11 * 5 is included because (3+5) + 3*5 = (11+1) + 11*1.
2^10 * 3^6 * 19^2 is included because (2+3+19)+ 2*3*19 = (10+6+2)+ 10*6*2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Total@ First@ # + Times @@ First@ # == Total@ Last@ # + Times @@ Last@ # &@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    spp(v) = vecsum(v) + prod(k=1, #v, v[k]);
    isok(n) = my(f = factor(n)); spp(f[,1]) == spp(f[,2]); \\ Michel Marcus, May 08 2016
  • Sage
    def d(n):
        v = factor(n)
        d1 = sum(w[0] for w in v) + prod(w[0] for w in v)
        d2 = sum(w[1] for w in v) + prod(w[1] for w in v)
        return d1 == d2
    [k for k in (1..10000) if d(k)]
    

A272858 Numbers m such that Product(1 + p_i) = Product(1 + e_i), where m = Product((p_i)^e_i).

Original entry on oeis.org

1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 28800, 30375, 34560, 36000, 38880, 48600, 54675, 84375, 92160, 96000, 121500, 134456, 153600, 169344, 217728, 218700, 225000, 247808, 262440, 296352, 300000, 337500, 340736, 387072, 395136, 489888, 666792, 703125, 750141, 781250, 823543, 857304, 885735
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

A048102 is clearly a subsequence, as for any prime p, p^p satisfy the herein condition. Similarly, A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e., any permutation of its prime signature) gives also a term.
The condition defining this sequence coincides with the condition in A272859 at least for the terms of A114129.

Examples

			92160 is included because 92160 = 2^11 * 3^2 * 5 and (2+1)*(3+1)*(5+1) = (11+1)*(2+1)*(1+1).
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Block[{p,e}, {p,e} = Transpose@ FactorInteger@ n; Times @@ (1+p) == Times @@ (1+e)]; Select[Range[10^6], ok] (* Giovanni Resta, May 08 2016 *)
  • PARI
    is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]+1)==prod(i=1,#f~,f[i,2]) \\ Charles R Greathouse IV, Sep 08 2016
  • Sage
    def d(n):
        v = factor(n)
        d1 = prod(1 + w[0] for w in v)
        d2 = prod(1 + w[1] for w in v)
        return d1 == d2
    [k for k in (1..10000) if d(k)]
    

Formula

If N is a positive integer and N = Product_{i=1..k} (p_i)^e_i is its prime factorization, then N is in A272858 iff Product_{i=1..k} (1 + p_i) = Product_{i=1..k} (1 + e_i).
For a number with three different prime factors N = p1^e1 * p2^e2 * p3^e3, the defining condition can be expressed as: p1 + p2 + p3 + p1*p2 + p1*p3 + p2*p3 + p1*p2*p3 = e1 + e2 + e3 + e1*e2 + e1*e3 + e2*e3 + e1*e2*e3.
Showing 1-10 of 18 results. Next