A272818
Numbers such that (sum + product) of all their prime factors equals (sum + product) of all exponents in their prime factorization.
Original entry on oeis.org
1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 30375, 36000, 48600, 51840, 54675, 69120, 84375, 121500, 134456, 169344, 174960, 192000, 225000, 240000, 247808, 337500, 340736, 395136, 435456, 451584, 703125, 750141, 781250, 787320, 823543, 857304, 885735
Offset: 1
885735 = 3^11 * 5 is included because (3+5) + 3*5 = (11+1) + 11*1.
2^10 * 3^6 * 19^2 is included because (2+3+19)+ 2*3*19 = (10+6+2)+ 10*6*2.
-
Select[Range[10^6], Total@ First@ # + Times @@ First@ # == Total@ Last@ # + Times @@ Last@ # &@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, May 08 2016 *)
-
spp(v) = vecsum(v) + prod(k=1, #v, v[k]);
isok(n) = my(f = factor(n)); spp(f[,1]) == spp(f[,2]); \\ Michel Marcus, May 08 2016
-
def d(n):
v = factor(n)
d1 = sum(w[0] for w in v) + prod(w[0] for w in v)
d2 = sum(w[1] for w in v) + prod(w[1] for w in v)
return d1 == d2
[k for k in (1..10000) if d(k)]
A272858
Numbers m such that Product(1 + p_i) = Product(1 + e_i), where m = Product((p_i)^e_i).
Original entry on oeis.org
1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 28800, 30375, 34560, 36000, 38880, 48600, 54675, 84375, 92160, 96000, 121500, 134456, 153600, 169344, 217728, 218700, 225000, 247808, 262440, 296352, 300000, 337500, 340736, 387072, 395136, 489888, 666792, 703125, 750141, 781250, 823543, 857304, 885735
Offset: 1
92160 is included because 92160 = 2^11 * 3^2 * 5 and (2+1)*(3+1)*(5+1) = (11+1)*(2+1)*(1+1).
-
ok[n_] := Block[{p,e}, {p,e} = Transpose@ FactorInteger@ n; Times @@ (1+p) == Times @@ (1+e)]; Select[Range[10^6], ok] (* Giovanni Resta, May 08 2016 *)
-
is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]+1)==prod(i=1,#f~,f[i,2]) \\ Charles R Greathouse IV, Sep 08 2016
-
def d(n):
v = factor(n)
d1 = prod(1 + w[0] for w in v)
d2 = prod(1 + w[1] for w in v)
return d1 == d2
[k for k in (1..10000) if d(k)]
A272859
Numbers m such that sigma(Product(p_j)) = sigma(Product(e_j)), where m = Product((p_i)^e_i) and sigma = A000203.
Original entry on oeis.org
1, 4, 27, 72, 108, 192, 800, 1458, 3125, 5120, 6144, 6272, 10976, 12500, 21600, 30375, 36000, 48600, 54675, 77760, 84375, 114688, 116640, 121500, 134456, 138240, 169344, 173056, 225000, 229376, 247808, 337500, 354294, 384000, 395136, 600000, 653184, 655360, 703125, 750141, 823543, 857304, 913952, 979776
Offset: 1
173056 is included because 173056 = 2^10 * 13^2 and sigma(2*13) = sigma(10*2).
653184 is included because 653184 = 2^7 * 3^6 * 7 and sigma(2*3*7) = sigma(7*6*1).
-
Select[Range[10^6], First@ # == Last@ # &@ Map[DivisorSigma[1, Times @@ #] &, Transpose@ FactorInteger@ #] &] (* Michael De Vlieger, May 12 2016 *)
-
A272859 = []
for n in (1..10000):
v = factor(n)
if prod(1 + w[0] for w in v) == sigma(prod(w[1] for w in v)): A272859.append(n)
print(A272859)
A122405
Numbers of the form Product_i b_i^e_i, where the b_i are all distinct values > 1 and the e_i are a permutation of the b_i.
Original entry on oeis.org
1, 4, 27, 72, 108, 256, 800, 1024, 2304, 3125, 5184, 6272, 6912, 9216, 10368, 12500, 16384, 18432, 20736, 21600, 27648, 30375, 36000, 41472, 46656, 48600, 62208, 84375, 102400, 121500, 124416, 157464, 169344, 186624, 204800, 209952, 225000
Offset: 1
2^2 * 3^4 * 4^3 = 20736, so 20736 is in the sequence.
A231230
Numbers k such that, in the prime factorization of k, the sum of the primes equals the squared sum of exponents.
Original entry on oeis.org
1, 28, 98, 132, 198, 351, 368, 726, 1092, 1375, 1488, 1521, 1540, 1638, 2232, 2295, 2320, 3008, 3025, 3348, 3822, 3825, 3850, 4048, 4232, 5022, 5390, 5800, 6375, 6591, 6655, 7098, 7980, 8470, 11328, 11375, 11970, 12012, 12432, 13005, 14500, 15925, 16992, 18018
Offset: 1
98 = 7^2 * 2, sum of primes is 9, sum of exponents is 3, so 98 is in the sequence.
-
t = {1}; n = 2; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Total[p] == Total[e]^2, AppendTo[t, n]]]; t (* T. D. Noe, Nov 08 2013 *)
-
isok(k) = my(f = factor(k)); sum(i=1, #f~, f[i, 1]) == sum(i=1, #f~, f[i, 2])^2; \\ Michel Marcus, Nov 07 2013
A231231
Numbers m such that, in the prime factorization of m, the product of the exponents equals the sum of prime factors and exponents.
Original entry on oeis.org
432, 648, 1152, 4000, 5400, 8748, 9000, 12800, 12960, 13500, 17280, 19440, 21952, 25000, 48000, 48384, 50625, 60000, 78400, 87480, 100352, 114048, 150000, 189000, 202176, 263424, 303264, 303750, 304128, 340736, 356400, 367416, 368640, 370440, 374544, 384912
Offset: 1
9000 = 3^2 * 2^3 * 5^3. Product of exponents is 2*3*3=18, sum of prime factors and exponents is 3+2+2+3+5+3=18, hence 9000 is in the sequence.
-
t = {}; n = 1; While[Length[t] < 38, n++; f = FactorInteger[n]; sm = Total[Flatten[f]]; pr = Times @@ Transpose[f][[2]]; If[sm == pr, AppendTo[t, n]]]; t (* T. D. Noe, Nov 08 2013 *)
peQ[n_]:=Module[{fi=FactorInteger[n]},Times@@fi[[All,2]]==Total[ Flatten[ fi]]]; Select[Range[400000],peQ] (* Harvey P. Dale, May 21 2019 *)
A231293
Numbers m such that, in the prime factorization of m, the product of the prime factors equals the sum of prime factors and exponents.
Original entry on oeis.org
20, 50, 112, 392, 1372, 2816, 3645, 4802, 6075, 10125, 13312, 15488, 16875, 28125, 46875, 85184, 86528, 278528, 413343, 468512, 562432, 964467, 1245184, 2250423, 2367488, 2576816, 3655808, 3932160, 5250987, 5898240, 8847360, 9830400, 11829248, 12252303
Offset: 1
50 = 2 * 5^2; the product of the prime factors is 2 * 5 = 10, the sum of the prime factors and exponents is 2 + 1 + 5 + 2 = 10, hence 50 is in the sequence.
112 = 2^4 * 7; the product of the prime factors is 2 * 7 = 14, the sum of the prime factors and exponents is 2 + 4 + 7 + 1 = 14, hence 112 is in the sequence.
14172488 = 2^3 * 11^6, product of prime factors is 2*11 = 22, sum of prime factors and exponents is 2 + 3 + 11 + 6 = 22, hence 14172488 is in the sequence.
-
t = {}; n = 1; While[Length[t] < 30, n++; f = FactorInteger[n]; sm = Total[Flatten[f]]; pr = Times @@ Transpose[f][[1]]; If[sm == pr, AppendTo[t, n]]]; t
ppfQ[n_]:=Module[{f=FactorInteger[n]},Times@@[f][[All,1]] == Total[ Flatten[f]]]; Select[Range[13*10^6],ppfQ] (* Harvey P. Dale, Aug 17 2016 *)
A276372
Numbers n such that, in the prime factorization of n, the list of the exponents is a rotation of the list of the prime factors.
Original entry on oeis.org
1, 4, 27, 72, 108, 800, 3125, 6272, 12500, 30375, 36000, 48600, 84375, 247808, 337500, 395136, 750141, 823543, 857304, 1384448, 3294172, 22235661, 24532992, 37879808, 53782400, 88942644, 122500000, 161980416, 171478296, 189267968, 235782657, 600112800, 1313046875, 2155524696
Offset: 1
4 is in the sequence because the prime factorization of 4 is 2^2, and the list of exponents (i.e., [2]) is a rotation of the list of prime factors (i.e., [2]).
36000 is in the sequence because the prime factorization of 36000 is 2^5 * 3^2 * 5^3, and the list of exponents (i.e., [5, 2, 3]) is a rotation of the list of prime factors (i.e., [2, 3, 5]).
84 is not in the sequence because the prime factorization of 84 is 2^2 * 3^1 * 7^1, and the list of exponents (i.e., [2, 1, 1]) is not a rotation of the list of prime factors (i.e., [2, 3, 7]).
21600 is not in the sequence because the prime factorization of 21600 is 2^5 * 3^3 * 5^2, and the list of exponents (i.e., [5, 3, 2]) is not a rotation of the list of prime factors (i.e., [2, 3, 5]).
-
Select[Range[10^6], Function[w, Total@ Boole@ Map[First@ w == # &, RotateLeft[Last@ w, #] & /@ Range[Length@ Last@ w]] > 0]@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, Sep 01 2016 *)
-
def in_seq( n ):
if n == 1: return True
pf = list( factor( n ) )
primes = [ t[0] for t in pf ]
exponents = [ t[1] for t in pf ]
if primes[0] in exponents:
i = exponents.index(primes[0])
exp_rotated = exponents[i : ] + exponents[0 : i]
return primes == exp_rotated
else:
return False
print([n for n in range(1, 10000000) if in_seq(n)])
-
# Much faster program that generates the solutions rather than searching for them.
from sage.misc.misc import powerset
primes = primes_first_n(9)
max_prime = primes[-1]
solutions = set([1])
max_solution = min(2^max_prime * max_prime^2, max_prime^max_prime)
for subset in powerset(primes):
subset_list = list(subset)
for i in range(0, len(subset_list)):
exponents = subset_list[i : ] + subset_list[0 : i]
product = 1
for j in range(0, len(subset_list)):
product = product * subset_list[j]^exponents[j]
if product <= max_solution:
solutions.add(product)
print(sorted(solutions))
Showing 1-8 of 8 results.
Comments