cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046748 Row sums of triangle A046521.

Original entry on oeis.org

1, 3, 13, 61, 295, 1447, 7151, 35491, 176597, 880125, 4390901, 21920913, 109486993, 547018941, 2733608905, 13662695645, 68294088535, 341399727335, 1706739347095, 8532741458075, 42660172763995, 213287735579135, 1066389745361635, 5331765761680895
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 1999

Keywords

Comments

Hankel transform is A082761. - Paul Barry, Apr 14 2010

Examples

			G.f. = 1 + 3*x + 13*x^2 + 61*x^3 + 295*x^4 + 1447*x^5 + 7151*x^6 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!( Sqrt(1-4*x)/(1-5*x) )); // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ Sqrt[ 1 - 4 x] / (1 - 5 x), {x, 0, n}]; (* Michael Somos, May 25 2014 *)
    a[ n_] := Binomial[ 2 n, n] Hypergeometric2F1[ -n, 1, 1/2, -1/4]; (* Michael Somos, May 25 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sqrt( 1 - 4*x + x * O(x^n)) / (1 - 5*x), n))}; /* Michael Somos, May 25 2014 */
    
  • SageMath
    def A046748_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt(1-4*x)/(1-5*x) ).list()
    A046748_list(40) # G. C. Greubel, Jul 28 2024

Formula

a(n) = binomial(2*n, n)*Sum_{k=0..n} binomial(n, k)/binomial(2*k, k).
a(n) = 5^n - 2*A046714(n-1), A046714(-1) := 0.
a(n) = 5*a(n-1) - 2*A000108(n-1).
G.f.: sqrt(1-4*x)/(1-5*x).
a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 1, a(-1) := 0, a(0)=1 (homogeneous recursion).
a(n) = binomial(2*n,n)*hypergeom([ -n,1 ],[ 1/2 ],-1/4) (hypergeometric 2F1 form).
0 = a(n)*(+400*a(n+1) - 330*a(n+2) + 50*a(n+3)) + a(n+1)*(-30*a(n+1) + 71*a(n+2) - 15*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 25 2014
a(n) ~ 5^(n - 1/2). - Vaclav Kotesovec, Jul 07 2016
D-finite with recurrence n*a(n) +3*(-3*n+2)*a(n-1) +10*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jul 23 2017

A046814 Row sums of triangle A046527.

Original entry on oeis.org

1, 2, 8, 37, 179, 881, 4369, 21746, 108444, 541362, 2704158, 13512392, 67534828, 337584992, 1687627800, 8437136085, 42182258715, 210899507685, 1054456597965, 5272139698215, 26360193558735, 131799177579015
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 5*Self(n-1) - 3*Catalan(n-1)/(2*n-3): n in [1..40]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    CoefficientList[Series[(1-4*x)*(1-Sqrt[1-4*x])/(2*x*(1-5*x)), {x,0,40}], x] (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    @CachedFunction
    def A046814(n): return 1 if n==0 else 5*A046814(n-1) - 3*catalan_number(n)/(2*n-1)
    [A046814(n) for n in range(41)] # G. C. Greubel, Jul 28 2024

Formula

G.f.: c(x) * (1-4*x) / (1-5*x), where c(x) = g.f. for Catalan A000108.
a(n) = C(n) + A046714(n-1) with A046714(-1) = 0 and C(n) = A000108(n) are the Catalan numbers.
a(n) = C(n) + (5^n - A046748(n))/2.
a(n) = 5*a(n-1) - 3*C(n)/(2*n-1), a(0)=1.
D-finite with recurrence a(n) = (9*n-1)*a(n-1)/(n+1) - 10*(2*n-3)*a(n-2)/(n+1), n >= 2, a(0)=1, a(1)=2.

Extensions

Offset corrected by Sean A. Irvine, Apr 25 2021

A046885 Row sums of triangle A046658.

Original entry on oeis.org

1, 4, 18, 85, 411, 2013, 9933, 49236, 244750, 1218888, 6077644, 30329434, 151439158, 756452890, 3779590010, 18888255205, 94405918355, 471899946985, 2359022096225, 11793343217935, 58960151969255, 294776293579255
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 5*Self(n-1) - Catalan(n-1): n in [1..40]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    Rest@CoefficientList[Series[Sqrt[1-4*x]*(1-Sqrt[1-4*x])/(2*(1-5*x)), {x,0,40}], x] (* G. C. Greubel, Jul 28 2024 *)
  • SageMath
    @CachedFunction
    def A046885(n): return 1 if n==1 else 5*A046885(n-1) - catalan_number(n-1)
    [A046885(n) for n in range(1,41)] # G. C. Greubel, Jul 28 2024

Formula

a(n) = 2*5^(n-1) - A046714(n-1) = (A046748(n) - 5^(n-1))/2.
G.f.: x*(2 - c(x))/(1-5*x), where c(x) is the g.f. of A000108 (Catalan numbers).
Inhomogeneous recursion: a(n) = 5*a(n-1) - C(n-1), n >= 2, a(1)=1; C(n) = A000108(n) (Catalan).
Homogeneous recursion: a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 3, a(1)=1, a(2)=4.

A271453 Triangle read by rows of coefficients of polynomials C_n(x) = Sum_{k=0..n} (2*k)!*(x - 1)^(n-k)/((k + 1)!*k!).

Original entry on oeis.org

1, 0, 1, 2, -1, 1, 3, 3, -2, 1, 11, 0, 5, -3, 1, 31, 11, -5, 8, -4, 1, 101, 20, 16, -13, 12, -5, 1, 328, 81, 4, 29, -25, 17, -6, 1, 1102, 247, 77, -25, 54, -42, 23, -7, 1, 3760, 855, 170, 102, -79, 96, -65, 30, -8, 1, 13036, 2905, 685, 68, 181, -175, 161, -95, 38, -9, 1, 45750, 10131, 2220, 617, -113, 356, -336, 256, -133, 47, -10, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

The polynomials C_n(x) have generating function G(x,t) = (1 - sqrt(1 - 4*t))/(2*t*(1 + t - x*t)) = 1 + x*t + (x^2 - x + 2)*t^2 + (x^3 - 2*x^2 + 3*x + 3)*t^3 + ...
C_n(x) can be defined by the recurrence relation C_n(x) = (x - 1)*C_(n-1)(x) + (2n)!/((n + 1)!*n!), C_0(x) = 1 or the equivalent form C_n(x) = (x - 1)*C_(n-1)(x) + C_n(1), C_0(x) = 1.
C_n(x) can be defined as convolution of Catalan numbers and powers of (x - 1).
Discriminants of C_n(x) gives the sequence: 1, 1, -7, -543, 533489, 7080307052, -1318026434480736, -3526797951451513832247, 137992774365121594001729513153, ...
C_n(0) = A032357(n).
C_n(1) = C_n(x) - (x - 1)*C_(n-1)(x) = A000108(n).
C_n(2) = Sum_{m=0..n} C_1(m) = A014137(n).
C_n(3) = A014318(n).
C_n(5) = A000346(n).
C_n(6) = A046714(n).

Examples

			Triangle begins:
   1;
   0,  1;
   2, -1,  1;
   3,  3, -2,  1;
  11,  0,  5, -3,  1;
  31, 11, -5,  8, -4,  1;
  ...
The first few polynomials are:
  C_0(x) = 1;
  C_1(x) = x;
  C_2(x) = x^2 -   x   + 2;
  C_3(x) = x^3 - 2*x^2 + 3*x   + 3;
  C_4(x) = x^4 - 3*x^3 + 5*x^2         + 11;
  C_5(x) = x^5 - 4*x^4 + 8*x^3 - 5*x^2 + 11*x + 31;
  ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[RecurrenceTable[{c[0] == 1, c[n] == (x - 1) c[n - 1] + CatalanNumber[n]}, c, {n, 11}], x]
    T[n_, n_]:= 1; T[n_, 0]:= (-1)^n*Sum[CatalanNumber[k]*(-1)^k, {k, 0, n}]; T[n_, k_]:= T[n - 1, k - 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 04 2018 *)
  • PARI
    {T(n, k) = if(k==n, 1, if(k==0, sum(j=0,n, (-1)^(n-j)*(2*j)!/(j!*(j+1)!)), T(n-1, k-1) - T(n-1, k))) };
    for(n=0, 10, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 04 2018

Formula

For triangle: T(n,n)=1, T(n,0) = Sum_{k=0..n} (-1)^(n-k)*(2*k)!/(k! * (k+1)!), T(n, k) = T(n-1, k-1) - T(n-1, k). - G. C. Greubel, Nov 04 2018
Showing 1-4 of 4 results.