cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274973 Centered cubohemioctahedral numbers: a(n) = 2*n^3+9*n^2+n+1.

Original entry on oeis.org

1, 13, 55, 139, 277, 481, 763, 1135, 1609, 2197, 2911, 3763, 4765, 5929, 7267, 8791, 10513, 12445, 14599, 16987, 19621, 22513, 25675, 29119, 32857, 36901, 41263, 45955, 50989, 56377, 62131, 68263, 74785, 81709, 89047, 96811, 105013, 113665, 122779, 132367
Offset: 0

Views

Author

Steven Beard, Jul 13 2016

Keywords

Comments

A faceting of the cuboctahedron, sharing the same square faces. The cubohemioctahedron has the same edge and vertex arrangement as the cuboctahedron. Beginning with the fourth term, the eight tetrahedral faces are each now "missing" a tetrahedron of size 1,4,10,20,35...(A000292). See A274974 centered octahemioctahedron for similar cuboctahedral faceting but with the square faces "missing."

Crossrefs

Cf. A005902 (centered cuboctahedral numbers), A274974 (centered octahemioctahedral numbers).

Programs

Formula

a(n) = 2*n^3+9*n^2+n+1.
G.f.: (-7*x^3+9*x^2+9*x+1)/(x-1)^4.

A289999 Sierpinski cuboctahedral numbers: a(n) = 16*4^n - 12*2^n + 9.

Original entry on oeis.org

13, 49, 217, 937, 3913, 16009, 64777, 260617, 1045513, 4188169, 16764937, 67084297, 268386313, 1073643529, 4294770697, 17179475977, 68718690313, 274876334089, 1099508482057, 4398040219657, 17592173461513, 70368719011849, 281474926379017, 1125899806179337, 4503599426043913, 18014398106828809
Offset: 0

Views

Author

Steven Beard, Sep 03 2017

Keywords

Comments

Sierpinski cuboctahedron constructed by joining eight Sierpinski tetrahedra of sequence 4, 10, 34, 130, 514, 2050, 8194... (4^n*2)+2 (the double of A052539). This sequence is also Sierpinski recursion for the octahemioctahedron A274974.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(13 - 42 x + 56 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Sep 03 2017 *)
    Table[16*4^n-12*2^n+9,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{13,49,217},30] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    Vec((13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Sep 03 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 9 \\ Charles R Greathouse IV, Nov 03 2017

Formula

a(n) = -3*2^(n + 2) + 2^(2n + 4) + 9.
From Colin Barker, Sep 03 2017: (Start)
G.f.: (13 - 42*x + 56*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
(End)
Showing 1-2 of 2 results.