A274974 Centered octahemioctahedral numbers: a(n) = (4*n^3+24*n^2+8*n+3)/3.
1, 13, 49, 117, 225, 381, 593, 869, 1217, 1645, 2161, 2773, 3489, 4317, 5265, 6341, 7553, 8909, 10417, 12085, 13921, 15933, 18129, 20517, 23105, 25901, 28913, 32149, 35617, 39325, 43281, 47493, 51969, 56717, 61745, 67061, 72673, 78589, 84817, 91365, 98241
Offset: 0
Links
- Steven Beard, Music track made with this sequence
- Wikipedia, Octahemioctahedron
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(-5 x^3 + 3 x^2 + 9 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* or *) Table[(4 n^3 + 24 n^2 + 8 n+3)/3, {n, 41}] (* Michael De Vlieger, Jul 13 2016 *)
-
PARI
a(n)=(4*n^3+24*n^2+8*n+3)/3 \\ Charles R Greathouse IV, Nov 03 2017
Formula
a(n) = (4*n^3+24*n^2+8*n+3)/3.
G.f.: (-5*x^3+3*x^2+9*x+1)/(x-1)^4.
Comments