cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293169 a(n) = Sum_{k=0..n} binomial(k, 6*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 925, 1718, 3017, 5097, 8464, 14197, 24753, 45697, 89150, 180254, 368734, 748924, 1493990, 2914906, 5565127, 10434412, 19322901, 35583926, 65615746, 121847272, 228638698, 433747259, 830227401, 1597653852, 3078928619, 5922703731, 11347651254
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2017

Keywords

Crossrefs

Programs

  • Maple
    f:=n-> add( binomial(k, 6*(n-k)), k=0..n);
    [seq(f(n),n=0..30)];
  • Mathematica
    Table[Sum[Binomial[k,6(n-k)],{k,0,n}],{n,0,40}] (* or *)  LinearRecurrence[{6,-15,20,-15,6,-1,1},{1,1,1,1,1,1,1},50] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec((1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7) + O(x^30)) \\ Colin Barker, Oct 18 2017

Formula

From Colin Barker, Oct 17 2017: (Start)
G.f.: (1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + a(n-7) for n>6.
(End)