cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

Original entry on oeis.org

1, 2, 1, 6, 3, 6, 16, 12, 16, 22, 51, 36, 60, 62, 91, 154, 148, 176, 236, 278, 328, 552, 508, 670, 771, 988, 1068, 1438, 1844, 1998, 2401, 2882, 3300, 4030, 4640, 5406, 7212, 7584, 9072, 10480, 12612, 13964, 17024, 18860, 22545, 27298, 30340, 34372, 41068
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= mul(1+2*x^m- x^(2*m), m=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Oct 01 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...