A293186 Odd bi-unitary abundant numbers: odd numbers k such that bsigma(k) > 2*k, where bsigma is the sum of the bi-unitary divisors function (A188999).
945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, 23205, 23625, 25245, 25515, 25935, 26565, 27405, 28215, 28875, 29295, 29835, 31185, 31395, 33345, 33495, 33915, 34125, 34155, 34965, 35805, 36855, 37125, 38745, 39585, 40635, 41055
Offset: 1
Keywords
Examples
945 is in the sequence since bsigma(945) = 1920 > 2*945.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; Select[Range[1000], bOddAbundantQ] (* after Michael De Vlieger at A188999 *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m))); biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n)); biusig(n) = vecsum(biudivs(n)); isok(n) = (n % 2) && (biusig(n) > 2*n); \\ Michel Marcus, Dec 15 2017
Comments