A293203 Numbers k such that A090086(k), the smallest pseudoprime to base k (not necessarily exceeding k), is a Carmichael number.
700, 1040, 1150, 1848, 2590, 2660, 6710, 6862, 7000, 7716, 7852, 8060, 8528, 9275, 9875, 10103, 10640, 11830, 12010, 12688, 13340, 16520, 17350, 17570, 17960, 18130, 18340, 19203, 19272, 19420, 19820, 19978, 20410, 20442, 20480, 20612, 20720, 23016, 23463
Offset: 1
Keywords
Examples
700 is the sequence since A090086(700) = 561 is a Carmichael number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, Periodic sequences of pseudoprimes connected with Carmichael number and the least period of the function l_x^C, Acta Arithmetica, Vol. 91, No. 1 (1999), pp. 75-83.
- Andrzej Rotkiewicz, Solved and unsolved problems on pseudoprime numbers and their generalizations, Applications of Fibonacci numbers, Springer Netherlands, 1999, pp. 293-306.
Programs
-
Mathematica
carmichaelQ[n_] := Divisible[n - 1, CarmichaelLambda[n]] && ! PrimeQ[n]; f[n_] := Block[{k = 1}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Select[Range[10000], carmichaelQ[f[#]] &] (* after Robert G.Wilson v at A090086 *)
Comments