cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293224 Restricted growth sequence transform of A293222, a product formed from the 2-digits present in the ternary expansions of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 4, 2, 5, 1, 4, 1, 3, 6, 3, 1, 7, 2, 2, 1, 5, 1, 7, 1, 7, 2, 5, 4, 8, 1, 9, 1, 10, 1, 11, 1, 12, 4, 12, 1, 13, 6, 14, 4, 14, 1, 8, 3, 15, 16, 3, 1, 17, 1, 2, 18, 15, 2, 11, 1, 7, 9, 19, 1, 20, 1, 2, 21, 12, 4, 11, 1, 22, 1, 3, 1, 23, 5, 4, 2, 22, 1, 24, 6, 25, 1, 12, 9, 26, 1, 14, 4, 27, 1, 13, 1, 28, 23, 14, 1, 29, 1, 30
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From Remy Sigrist
    A293222(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289814(d)))); m; };
    write_to_bfile(1,rgs_transform(vector(19683,n,A293222(n))),"b293224.txt");