cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293231 a(n) = Product_{d|n, dA019565(A193231(d)).

Original entry on oeis.org

1, 2, 2, 12, 2, 36, 2, 120, 6, 60, 2, 5400, 2, 360, 30, 25200, 2, 56700, 2, 21000, 180, 840, 2, 23814000, 10, 504, 630, 50400, 2, 661500, 2, 554400, 420, 132, 300, 392931000, 2, 792, 252, 242550000, 2, 24948000, 2, 2772000, 22050, 1980, 2, 605113740000, 60, 4851000, 66, 3880800, 2, 720373500, 700, 4889808000, 396, 2772, 2, 588305025000, 2, 1848
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A019565, A193231, A290090, A293214, A293232 (rgs-version of this sequence).
Cf. also A001317, A045544, A053576.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ This function from Franklin T. Adams-Watters
    A293231(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A193231(d)))); m; };

Formula

a(n) = Product_{d|n, dA019565(A193231(d)).
For all n >= 1, A007814(a(n)) = A290090(n).
For n = 0..5, a(A001317((2^n)-1)) = A002110((2^n)-1).