A293237 Decimal expansion of the escape probability for a random walk on the 3D fcc lattice.
7, 4, 3, 6, 8, 1, 7, 6, 3, 4, 9, 5, 3, 5, 1, 2, 2, 8, 9, 0, 4, 9, 6, 9, 8, 1, 9, 3, 6, 5, 3, 7, 6, 4, 8, 0, 5, 0, 9, 6, 0, 2, 2, 5, 0, 9, 0, 5, 1, 2, 1, 7, 0, 5, 6, 6, 2, 0, 4, 4, 3, 9, 3, 4, 0, 1, 9, 4, 3, 3, 5, 6, 7, 3, 5, 3, 7, 6, 6, 8, 2, 2, 9, 6, 1, 1, 0
Offset: 0
Examples
0.74368176349535122890496981936537648...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517-533.
- G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650-662.
- Index entries for sequences related to f.c.c. lattice
- Index entries for sequences related to walks
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); 2^(14/3)*Pi(R)^4/(9*Gamma(1/3)^6); // G. C. Greubel, Oct 26 2018
-
Mathematica
RealDigits[2^(14/3)*Pi^4/(9*Gamma[1/3]^6), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
-
PARI
2^(14/3)*Pi^4/(9*gamma(1/3)^6) \\ Altug Alkan, Apr 09 2018
Formula
Equals 2^(14/3)*Pi^4/(9*Gamma(1/3)^6).
Comments