cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A293481 Numbers with last digit greater than or equal to 5 (in base 10).

Original entry on oeis.org

5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 75, 76, 77, 78, 79, 85, 86, 87, 88, 89, 95, 96, 97, 98, 99, 105, 106, 107, 108, 109, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129
Offset: 1

Views

Author

Bruno Berselli, Oct 10 2017

Keywords

Comments

Equivalently, numbers k such that floor(k/5) is odd.
Also numbers k such that ceiling(-k/5) is odd. - Peter Luschny, Oct 10 2017

Crossrefs

Complement of A293292.
Cf. A010122 (first differences, after 3).

Programs

  • Magma
    [n: n in [0..150] | n mod 10 ge 5];
    
  • Maple
    select(n -> type(ceil(-n/5), odd), [$0..130]); # Peter Luschny, Oct 10 2017
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {5, 6, 7, 8, 9, 15}, 70]
    (* Second program: *)
    Select[Range[129], Mod[#, 10] >= 5 &] (* Jean-François Alcover, Oct 10 2017 *)
  • PARI
    select(k -> (k\5) % 2, vector(130, k, k)) \\ Peter Luschny, Oct 10 2017
    
  • PARI
    Vec(x*(5 + x + x^2 + x^3 + x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100)) \\ Colin Barker, Oct 10 2017
    
  • Python
    [k for k in range(130) if (k//5) % 2 == 1] # Peter Luschny, Oct 10 2017
    
  • Python
    def A293481(n): return (n<<1)+3-(n-1)%5 # Chai Wah Wu, Oct 29 2024
    
  • Sage
    [k for k in (0..130) if not 2.divides(k//5)] # Peter Luschny, Oct 10 2017

Formula

G.f.: x*(5 + x + x^2 + x^3 + x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(n) = A293292(n) + 5.
a(n) = 2n+3-((n-1) mod 5). - Chai Wah Wu, Oct 29 2024
Showing 1-1 of 1 results.