cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293311 Rectangular array read by antidiagonals: A(n,k) = number of magic labelings of the graph LOOP X C_n (see comments) having magic sum k, n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 7, 1, 6, 15, 23, 26, 11, 1, 7, 21, 42, 70, 57, 18, 1, 8, 28, 69, 155, 197, 129, 29, 1, 9, 36, 106, 301, 533, 571, 289, 47, 1, 10, 45, 154, 532, 1223, 1884, 1640, 650, 76, 1, 11, 55, 215, 876, 2494, 5103, 6604, 4726, 1460, 123, 1
Offset: 1

Views

Author

L. Edson Jeffery, Oct 06 2017

Keywords

Comments

The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n.
The generating function for row n of this array was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews, et al., and is needed for the Mathematica program below.

Examples

			Array begins:
.  1   2    3     4      5       6       7        8        9        10
.  1   3    6    10     15      21      28       36       45        55
.  1   4   11    23     42      69     106      154      215       290
.  1   7   26    70    155     301     532      876     1365      2035
.  1  11   57   197    533    1223    2494     4654     8105     13355
.  1  18  129   571   1884    5103   11998    25362    49347     89848
.  1  29  289  1640   6604   21122   57271   137155   298184    599954
.  1  47  650  4726  23219   87677  274132   743724  1806597   4016683
.  1  76 1460 13604  81555  363606 1310974  4029310 10936124  26868719
.  1 123 3281 39175 286555 1508401 6271378 21836366 66220705 179784715
		

Crossrefs

Programs

  • Mathematica
    (* Run this first: *)
    << Omega.m;
    (* Then run the following in a different cell: *)
    nmax = 11; Do[cond = {}; Do[If[n == 1, AppendTo[cond, Subscript[a, 1] + Subscript[a, 2] == Subscript[a, 3]]; Break[], AppendTo[cond, If[j == n, Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 1] == Subscript[a, 2*n + 1], Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 2*j + 1] == Subscript[a, 2*n + 1]]]], {j, n}]; f = OEqSum[Product[Subscript[x, i]^Subscript[a, i], {i, 2*n + 1}], cond, \[Lambda]][[1]] /. {Subscript[x, 2*n + 1] -> z} /. {Subscript[x, _] -> 1}; Do[f = OEqR[f, Subscript[\[Lambda], k]], {k, Length[cond]}]; Do[a293311[n, k] = Coefficient[Series[f, {z, 0, nmax - 1}], z, k], {k, 0, nmax - 1}], {n, nmax}];
    (* Array: *)
    Grid[Table[a293311[n, k], {n, nmax}, {k, 0, nmax - 1}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    Flatten[Table[a293311[n, k - n], {k, 11}, {n, k}]]