A293311 Rectangular array read by antidiagonals: A(n,k) = number of magic labelings of the graph LOOP X C_n (see comments) having magic sum k, n >= 1, k >= 0.
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 7, 1, 6, 15, 23, 26, 11, 1, 7, 21, 42, 70, 57, 18, 1, 8, 28, 69, 155, 197, 129, 29, 1, 9, 36, 106, 301, 533, 571, 289, 47, 1, 10, 45, 154, 532, 1223, 1884, 1640, 650, 76, 1, 11, 55, 215, 876, 2494, 5103, 6604, 4726, 1460, 123, 1
Offset: 1
Examples
Array begins: . 1 2 3 4 5 6 7 8 9 10 . 1 3 6 10 15 21 28 36 45 55 . 1 4 11 23 42 69 106 154 215 290 . 1 7 26 70 155 301 532 876 1365 2035 . 1 11 57 197 533 1223 2494 4654 8105 13355 . 1 18 129 571 1884 5103 11998 25362 49347 89848 . 1 29 289 1640 6604 21122 57271 137155 298184 599954 . 1 47 650 4726 23219 87677 274132 743724 1806597 4016683 . 1 76 1460 13604 81555 363606 1310974 4029310 10936124 26868719 . 1 123 3281 39175 286555 1508401 6271378 21836366 66220705 179784715
Links
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package.
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Graph Loop.
Crossrefs
Programs
-
Mathematica
(* Run this first: *) << Omega.m; (* Then run the following in a different cell: *) nmax = 11; Do[cond = {}; Do[If[n == 1, AppendTo[cond, Subscript[a, 1] + Subscript[a, 2] == Subscript[a, 3]]; Break[], AppendTo[cond, If[j == n, Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 1] == Subscript[a, 2*n + 1], Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 2*j + 1] == Subscript[a, 2*n + 1]]]], {j, n}]; f = OEqSum[Product[Subscript[x, i]^Subscript[a, i], {i, 2*n + 1}], cond, \[Lambda]][[1]] /. {Subscript[x, 2*n + 1] -> z} /. {Subscript[x, _] -> 1}; Do[f = OEqR[f, Subscript[\[Lambda], k]], {k, Length[cond]}]; Do[a293311[n, k] = Coefficient[Series[f, {z, 0, nmax - 1}], z, k], {k, 0, nmax - 1}], {n, nmax}]; (* Array: *) Grid[Table[a293311[n, k], {n, nmax}, {k, 0, nmax - 1}]] (* Array antidiagonals flattened (gives this sequence): *) Flatten[Table[a293311[n, k - n], {k, 11}, {n, k}]]
Comments