cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293312 Rectangular array read by antidiagonals: A(n,k) = tr((M_n)^k), k >= 0, where M_n is the n X n matrix M_1 = {{1}}, M_n = {{0,...,0,1},{0,...,0,1,1},...,{0,1,...,1},{1,...,1}}, n > 1, and tr(.) is the trace.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 2, 4, 1, 4, 6, 2, 5, 1, 7, 11, 10, 3, 6, 1, 11, 26, 23, 15, 3, 7, 1, 18, 57, 70, 42, 21, 4, 8, 1, 29, 129, 197, 155, 69, 28, 4, 9, 1, 47, 289, 571, 533, 301, 106, 36, 5, 10, 1, 76, 650, 1640, 1884, 1223, 532, 154, 45, 5, 11
Offset: 1

Views

Author

L. Edson Jeffery, Oct 10 2017

Keywords

Comments

Conjecture: For all n >= 1, for all k >= 2, A(n, k) = A293311(k, n); i.e., A(n, k) = number of magic labelings of the graph LOOP X C_k with magic sum n - 1.

Examples

			Array begins:
.   1 1  1   1    1     1      1       1       1        1         1
.   2 1  3   4    7    11     18      29      47       76       123
.   3 2  6  11   26    57    129     289     650     1460      3281
.   4 2 10  23   70   197    571    1640    4726    13604     39175
.   5 3 15  42  155   533   1884    6604   23219    81555    286555
.   6 3 21  69  301  1223   5103   21122   87677   363606   1508401
.   7 4 28 106  532  2494  11998   57271  274132  1310974   6271378
.   8 4 36 154  876  4654  25362  137155  743724  4029310  21836366
.   9 5 45 215 1365  8105  49347  298184 1806597 10936124  66220705
.  10 5 55 290 2035 13355  89848  599954 4016683 26868719 179784715
.  11 6 66 381 2926 21031 154935 1132942 8306078 60843972 445824731
.  ...
		

Crossrefs

Cf. A293311.
Cf. A000012, A000032, A274975, A188128, A189237 (rows 1..5).
Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310, A293309 (columns k = 0,2..10 (conjectured)).

Programs

  • Mathematica
    s[0, x_] := 1; s[1, x_] := x; s[k_, x_] := x*s[k - 1, x] - s[k - 2, x]; c[n_, j_] := 2 (-1)^(j - 1) Cos[j*Pi/(2 n + 1)]; a[n_, k_] := Round[Sum[s[n - 1, c[n, j]]^(k), {j, n}]];
    (* Array: *)
    Grid[Table[a[n, k], {n, 11}, {k, 0, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    Flatten[Table[a[n, k - n], {k, 11}, {n, k}]]

Formula

Let S(0, x) = 1, S(1, x) = x, S(k, x) = x*S(k - 1, x) - S(k - 2, x) (the S-polynomials of Wolfdieter Lang) and c(n, j) = 2*(-1)^(j - 1)*cos(j*Pi/(2*n + 1)). Then A(n, k) = Sum_{j=1..n} S(n - 1, c(n, j))^(k), n >= 1, k >= 0.